Modelling of back tempering in laser hardening View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-06

AUTHORS

Luca Giorleo, Barbara Previtali, Quirico Semeraro

ABSTRACT

Back tempering is one of the most critical problems in laser hardening of extended surfaces. In this type of treatment, several laser tracks are slightly overlapped to obtain a uniform hardened surface. Due to the overlapping, tempered zones are generated on the treated surface with the consequent lack of uniformity in the surface hardness. In this work, a regression model was developed to estimate the loss of hardness due to the tempering effect as a function of the thermal cycle. A specific test, named laser surface treatment test, was designed and executed to reproduce the hardness reduction due to the tempering effect. An analytical thermal model was developed to evaluate the thermal cycle undergone by the material during this test. By the results of the laser surface treatment test combined with the analytical model, a prediction model was estimated. Good agreement was found between predicted and measured hardness decrease, and the identified model could be integrated in a numerical code to evaluate the optimal process parameters. More... »

PAGES

969-977

References to SciGraph publications

  • 1987-10. Effect of overlap pass tempering on hardness and fatigue behaviour in laser heat treatment of carbon steel in JOURNAL OF MATERIALS SCIENCE LETTERS
  • 2009-01. Modelling of the transient thermal field in laser surface treatment test in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 1972-05. Tempering of steel in METALLURGICAL TRANSACTIONS A
  • 1997-07. Basic directions of effective use of laser equipment for heat treatment of alloys in METAL SCIENCE AND HEAT TREATMENT
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00170-010-3008-5

    DOI

    http://dx.doi.org/10.1007/s00170-010-3008-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019292839


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Brescia", 
              "id": "https://www.grid.ac/institutes/grid.7637.5", 
              "name": [
                "Dipartimento di Ingegneria Meccanica e Industriale, Universita\u2019 Degli Studi Di Brescia, Viale Branze, 38, 25123, Brescia, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Giorleo", 
            "givenName": "Luca", 
            "id": "sg:person.07472051344.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07472051344.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Polytechnic University of Milan", 
              "id": "https://www.grid.ac/institutes/grid.4643.5", 
              "name": [
                "Dipartimento di Meccanica, Politecnico Di Milano, Via La Masa, 1, 20156, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Previtali", 
            "givenName": "Barbara", 
            "id": "sg:person.0715457332.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715457332.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Polytechnic University of Milan", 
              "id": "https://www.grid.ac/institutes/grid.4643.5", 
              "name": [
                "Dipartimento di Meccanica, Politecnico Di Milano, Via La Masa, 1, 20156, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Semeraro", 
            "givenName": "Quirico", 
            "id": "sg:person.0747442523.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747442523.37"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0169-4332(02)01349-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010142020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0169-4332(02)01349-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010142020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-6160(84)90175-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011829766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-6160(84)90175-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011829766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2004.04.276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012047666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2004.04.276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012047666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0257-8972(02)00495-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013598153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0257-8972(02)00495-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013598153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02642436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015100477", 
              "https://doi.org/10.1007/bf02642436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02642436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015100477", 
              "https://doi.org/10.1007/bf02642436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.surfcoat.2006.03.039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017591486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0017-9310(00)00316-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019708932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0924-0136(97)00011-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023692530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02467121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024692014", 
              "https://doi.org/10.1007/bf02467121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01729179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028078960", 
              "https://doi.org/10.1007/bf01729179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cirp.2008.03.057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031705480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-007-1350-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032916116", 
              "https://doi.org/10.1007/s00170-007-1350-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.msea.2007.07.054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035597755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.msea.2004.03.067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046316524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0143-8166(00)00066-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052105216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1750872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057812802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.335603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057940701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1243/0954405991517128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064449298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1243/0954405991517128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064449298"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-06", 
        "datePublishedReg": "2011-06-01", 
        "description": "Back tempering is one of the most critical problems in laser hardening of extended surfaces. In this type of treatment, several laser tracks are slightly overlapped to obtain a uniform hardened surface. Due to the overlapping, tempered zones are generated on the treated surface with the consequent lack of uniformity in the surface hardness. In this work, a regression model was developed to estimate the loss of hardness due to the tempering effect as a function of the thermal cycle. A specific test, named laser surface treatment test, was designed and executed to reproduce the hardness reduction due to the tempering effect. An analytical thermal model was developed to evaluate the thermal cycle undergone by the material during this test. By the results of the laser surface treatment test combined with the analytical model, a prediction model was estimated. Good agreement was found between predicted and measured hardness decrease, and the identified model could be integrated in a numerical code to evaluate the optimal process parameters.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00170-010-3008-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043671", 
            "issn": [
              "0268-3768", 
              "1433-3015"
            ], 
            "name": "The International Journal of Advanced Manufacturing Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9-12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "54"
          }
        ], 
        "name": "Modelling of back tempering in laser hardening", 
        "pagination": "969-977", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5becaec04dad358d78c524a99b4636d4a8bd233f7bbd72bae9c3ccac26544d64"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00170-010-3008-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019292839"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00170-010-3008-5", 
          "https://app.dimensions.ai/details/publication/pub.1019292839"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000487.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s00170-010-3008-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-010-3008-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-010-3008-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-010-3008-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-010-3008-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    136 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00170-010-3008-5 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author N2e553a1fabff44ceac7bb79242b96dfa
    4 schema:citation sg:pub.10.1007/bf01729179
    5 sg:pub.10.1007/bf02467121
    6 sg:pub.10.1007/bf02642436
    7 sg:pub.10.1007/s00170-007-1350-z
    8 https://doi.org/10.1016/0001-6160(84)90175-5
    9 https://doi.org/10.1016/j.cirp.2008.03.057
    10 https://doi.org/10.1016/j.jmatprotec.2004.04.276
    11 https://doi.org/10.1016/j.msea.2004.03.067
    12 https://doi.org/10.1016/j.msea.2007.07.054
    13 https://doi.org/10.1016/j.surfcoat.2006.03.039
    14 https://doi.org/10.1016/s0017-9310(00)00316-1
    15 https://doi.org/10.1016/s0143-8166(00)00066-x
    16 https://doi.org/10.1016/s0169-4332(02)01349-1
    17 https://doi.org/10.1016/s0257-8972(02)00495-4
    18 https://doi.org/10.1016/s0924-0136(97)00011-3
    19 https://doi.org/10.1063/1.1750872
    20 https://doi.org/10.1063/1.335603
    21 https://doi.org/10.1243/0954405991517128
    22 schema:datePublished 2011-06
    23 schema:datePublishedReg 2011-06-01
    24 schema:description Back tempering is one of the most critical problems in laser hardening of extended surfaces. In this type of treatment, several laser tracks are slightly overlapped to obtain a uniform hardened surface. Due to the overlapping, tempered zones are generated on the treated surface with the consequent lack of uniformity in the surface hardness. In this work, a regression model was developed to estimate the loss of hardness due to the tempering effect as a function of the thermal cycle. A specific test, named laser surface treatment test, was designed and executed to reproduce the hardness reduction due to the tempering effect. An analytical thermal model was developed to evaluate the thermal cycle undergone by the material during this test. By the results of the laser surface treatment test combined with the analytical model, a prediction model was estimated. Good agreement was found between predicted and measured hardness decrease, and the identified model could be integrated in a numerical code to evaluate the optimal process parameters.
    25 schema:genre research_article
    26 schema:inLanguage en
    27 schema:isAccessibleForFree false
    28 schema:isPartOf Na9bb107860bb4685bb0c52b5a09552d0
    29 Nccea69f1acba44bea8f4fa846bb135de
    30 sg:journal.1043671
    31 schema:name Modelling of back tempering in laser hardening
    32 schema:pagination 969-977
    33 schema:productId N63f6f5ce3fa446679f5e0b5ef730f150
    34 Nb21420d9a50245d5b0859f034bac9b3d
    35 Nf7928e0a073842b6820d38fcdc517195
    36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019292839
    37 https://doi.org/10.1007/s00170-010-3008-5
    38 schema:sdDatePublished 2019-04-10T19:03
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher Ndde839782786481daf4ee5e147eb3804
    41 schema:url http://link.springer.com/10.1007/s00170-010-3008-5
    42 sgo:license sg:explorer/license/
    43 sgo:sdDataset articles
    44 rdf:type schema:ScholarlyArticle
    45 N012c7a801a014f73994d1446eb7f9c3b rdf:first sg:person.0747442523.37
    46 rdf:rest rdf:nil
    47 N2e553a1fabff44ceac7bb79242b96dfa rdf:first sg:person.07472051344.51
    48 rdf:rest N338525369d834326807834cb7085cbdb
    49 N338525369d834326807834cb7085cbdb rdf:first sg:person.0715457332.97
    50 rdf:rest N012c7a801a014f73994d1446eb7f9c3b
    51 N63f6f5ce3fa446679f5e0b5ef730f150 schema:name readcube_id
    52 schema:value 5becaec04dad358d78c524a99b4636d4a8bd233f7bbd72bae9c3ccac26544d64
    53 rdf:type schema:PropertyValue
    54 Na9bb107860bb4685bb0c52b5a09552d0 schema:issueNumber 9-12
    55 rdf:type schema:PublicationIssue
    56 Nb21420d9a50245d5b0859f034bac9b3d schema:name doi
    57 schema:value 10.1007/s00170-010-3008-5
    58 rdf:type schema:PropertyValue
    59 Nccea69f1acba44bea8f4fa846bb135de schema:volumeNumber 54
    60 rdf:type schema:PublicationVolume
    61 Ndde839782786481daf4ee5e147eb3804 schema:name Springer Nature - SN SciGraph project
    62 rdf:type schema:Organization
    63 Nf7928e0a073842b6820d38fcdc517195 schema:name dimensions_id
    64 schema:value pub.1019292839
    65 rdf:type schema:PropertyValue
    66 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Engineering
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Interdisciplinary Engineering
    71 rdf:type schema:DefinedTerm
    72 sg:journal.1043671 schema:issn 0268-3768
    73 1433-3015
    74 schema:name The International Journal of Advanced Manufacturing Technology
    75 rdf:type schema:Periodical
    76 sg:person.0715457332.97 schema:affiliation https://www.grid.ac/institutes/grid.4643.5
    77 schema:familyName Previtali
    78 schema:givenName Barbara
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715457332.97
    80 rdf:type schema:Person
    81 sg:person.07472051344.51 schema:affiliation https://www.grid.ac/institutes/grid.7637.5
    82 schema:familyName Giorleo
    83 schema:givenName Luca
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07472051344.51
    85 rdf:type schema:Person
    86 sg:person.0747442523.37 schema:affiliation https://www.grid.ac/institutes/grid.4643.5
    87 schema:familyName Semeraro
    88 schema:givenName Quirico
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747442523.37
    90 rdf:type schema:Person
    91 sg:pub.10.1007/bf01729179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028078960
    92 https://doi.org/10.1007/bf01729179
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/bf02467121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024692014
    95 https://doi.org/10.1007/bf02467121
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/bf02642436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015100477
    98 https://doi.org/10.1007/bf02642436
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/s00170-007-1350-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1032916116
    101 https://doi.org/10.1007/s00170-007-1350-z
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/0001-6160(84)90175-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011829766
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/j.cirp.2008.03.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031705480
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/j.jmatprotec.2004.04.276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012047666
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/j.msea.2004.03.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046316524
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/j.msea.2007.07.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035597755
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/j.surfcoat.2006.03.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017591486
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/s0017-9310(00)00316-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019708932
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/s0143-8166(00)00066-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052105216
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/s0169-4332(02)01349-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010142020
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/s0257-8972(02)00495-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013598153
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/s0924-0136(97)00011-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023692530
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1063/1.1750872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057812802
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1063/1.335603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057940701
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1243/0954405991517128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064449298
    130 rdf:type schema:CreativeWork
    131 https://www.grid.ac/institutes/grid.4643.5 schema:alternateName Polytechnic University of Milan
    132 schema:name Dipartimento di Meccanica, Politecnico Di Milano, Via La Masa, 1, 20156, Milan, Italy
    133 rdf:type schema:Organization
    134 https://www.grid.ac/institutes/grid.7637.5 schema:alternateName University of Brescia
    135 schema:name Dipartimento di Ingegneria Meccanica e Industriale, Universita’ Degli Studi Di Brescia, Viale Branze, 38, 25123, Brescia, Italy
    136 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...