Application of multiple regression and adaptive neuro fuzzy inference system for the prediction of surface roughness View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-01

AUTHORS

S. Kumanan, C. P. Jesuthanam, R. Ashok Kumar

ABSTRACT

A manufacturing system is oriented towards higher production rate, quality, and reduced cost and time to make a product. Surface roughness is an index for determining the quality of machined products and is influenced by the cutting parameters. Surface roughness prediction in machining is being attempted with many methodologies, yet there is a need to develop robust, autonomous and accurate predictive system. This work proposes the application of two different hybrid intelligent techniques, adaptive neuro fuzzy inference system (ANFIS) and radial basis function neural network- fuzzy logic (RBFNN-FL) for the prediction of surface roughness in end milling. An experimental data set is obtained with speed, feed, depth of cut and vibration as input parameters and surface roughness as output parameter. The input-output data set is used for training and validation of the proposed techniques. After validation they are forwarded for the prediction of surface roughness. Both the hybrid techniques are found to be superior over their respective individual intelligent techniques in terms of computational speed and accuracy for the prediction of surface roughness. More... »

PAGES

778-788

References to SciGraph publications

  • 2001-05. A Fuzzy-Net-Based Multilevel In-Process Surface Roughness Recognition System in Milling Operations in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 1999-03. In-Process Surface Roughness Recognition (ISRR) System in End-Milling Operations in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2002-09. Development of Empirical Models for Surface Roughness Prediction in Finish Turning in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00170-006-0755-4

    DOI

    http://dx.doi.org/10.1007/s00170-006-0755-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1011969254


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Institute of Technology Tiruchirappalli", 
              "id": "https://www.grid.ac/institutes/grid.419653.c", 
              "name": [
                "Department of Production Engineering, National Institute of Technology, Tiruchirappalli, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kumanan", 
            "givenName": "S.", 
            "id": "sg:person.016710140446.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016710140446.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Technology Tiruchirappalli", 
              "id": "https://www.grid.ac/institutes/grid.419653.c", 
              "name": [
                "Department of Production Engineering, National Institute of Technology, Tiruchirappalli, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jesuthanam", 
            "givenName": "C. P.", 
            "id": "sg:person.010005750645.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010005750645.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Technology Tiruchirappalli", 
              "id": "https://www.grid.ac/institutes/grid.419653.c", 
              "name": [
                "Department of Production Engineering, National Institute of Technology, Tiruchirappalli, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ashok Kumar", 
            "givenName": "R.", 
            "id": "sg:person.010603331245.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010603331245.18"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0890-6955(02)00008-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001047381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001700050057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002999214", 
              "https://doi.org/10.1007/s001700050057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0890-6955(95)00057-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006609844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001700170132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007176890", 
              "https://doi.org/10.1007/s001700170132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0890-6955(97)00073-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007195626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0890-6955(03)00059-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009826678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0890-6955(03)00059-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009826678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001700200162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014392793", 
              "https://doi.org/10.1007/s001700200162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0890-6955(95)90402-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016083802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0924-0136(02)00060-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026602961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2004.07.097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027650066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0924-0136(02)00595-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029116000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0890-6955(02)00078-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032452785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0890-6955(01)00023-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040978058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0924-0136(02)00847-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045941692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0924-0136(02)00847-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045941692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmachtools.2004.06.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048226493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/21.256541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061121711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.1707035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062073891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icnn.1997.614208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093950666"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-01", 
        "datePublishedReg": "2008-01-01", 
        "description": "A manufacturing system is oriented towards higher production rate, quality, and reduced cost and time to make a product. Surface roughness is an index for determining the quality of machined products and is influenced by the cutting parameters. Surface roughness prediction in machining is being attempted with many methodologies, yet there is a need to develop robust, autonomous and accurate predictive system. This work proposes the application of two different hybrid intelligent techniques, adaptive neuro fuzzy inference system (ANFIS) and radial basis function neural network- fuzzy logic (RBFNN-FL) for the prediction of surface roughness in end milling. An experimental data set is obtained with speed, feed, depth of cut and vibration as input parameters and surface roughness as output parameter. The input-output data set is used for training and validation of the proposed techniques. After validation they are forwarded for the prediction of surface roughness. Both the hybrid techniques are found to be superior over their respective individual intelligent techniques in terms of computational speed and accuracy for the prediction of surface roughness.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00170-006-0755-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043671", 
            "issn": [
              "0268-3768", 
              "1433-3015"
            ], 
            "name": "The International Journal of Advanced Manufacturing Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7-8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "35"
          }
        ], 
        "name": "Application of multiple regression and adaptive neuro fuzzy inference system for the prediction of surface roughness", 
        "pagination": "778-788", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "390744e2e1088a7d5a7b9c092df550f3a1e5261a1f3afbbe81b3d586b0422fe4"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00170-006-0755-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1011969254"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00170-006-0755-4", 
          "https://app.dimensions.ai/details/publication/pub.1011969254"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13073_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00170-006-0755-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-006-0755-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-006-0755-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-006-0755-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-006-0755-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    132 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00170-006-0755-4 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Ned9e87fadfb542edb53fd9eb5ba7fd93
    4 schema:citation sg:pub.10.1007/s001700050057
    5 sg:pub.10.1007/s001700170132
    6 sg:pub.10.1007/s001700200162
    7 https://doi.org/10.1016/0890-6955(95)00057-7
    8 https://doi.org/10.1016/0890-6955(95)90402-8
    9 https://doi.org/10.1016/j.ijmachtools.2004.06.004
    10 https://doi.org/10.1016/j.jmatprotec.2004.07.097
    11 https://doi.org/10.1016/s0890-6955(01)00023-2
    12 https://doi.org/10.1016/s0890-6955(02)00008-1
    13 https://doi.org/10.1016/s0890-6955(02)00078-0
    14 https://doi.org/10.1016/s0890-6955(03)00059-2
    15 https://doi.org/10.1016/s0890-6955(97)00073-4
    16 https://doi.org/10.1016/s0924-0136(02)00060-2
    17 https://doi.org/10.1016/s0924-0136(02)00595-2
    18 https://doi.org/10.1016/s0924-0136(02)00847-6
    19 https://doi.org/10.1109/21.256541
    20 https://doi.org/10.1109/icnn.1997.614208
    21 https://doi.org/10.1115/1.1707035
    22 schema:datePublished 2008-01
    23 schema:datePublishedReg 2008-01-01
    24 schema:description A manufacturing system is oriented towards higher production rate, quality, and reduced cost and time to make a product. Surface roughness is an index for determining the quality of machined products and is influenced by the cutting parameters. Surface roughness prediction in machining is being attempted with many methodologies, yet there is a need to develop robust, autonomous and accurate predictive system. This work proposes the application of two different hybrid intelligent techniques, adaptive neuro fuzzy inference system (ANFIS) and radial basis function neural network- fuzzy logic (RBFNN-FL) for the prediction of surface roughness in end milling. An experimental data set is obtained with speed, feed, depth of cut and vibration as input parameters and surface roughness as output parameter. The input-output data set is used for training and validation of the proposed techniques. After validation they are forwarded for the prediction of surface roughness. Both the hybrid techniques are found to be superior over their respective individual intelligent techniques in terms of computational speed and accuracy for the prediction of surface roughness.
    25 schema:genre research_article
    26 schema:inLanguage en
    27 schema:isAccessibleForFree false
    28 schema:isPartOf Na880deef195b47af9667777ee52cdbf2
    29 Nae5e71c9f810481899a151a124c2e6f2
    30 sg:journal.1043671
    31 schema:name Application of multiple regression and adaptive neuro fuzzy inference system for the prediction of surface roughness
    32 schema:pagination 778-788
    33 schema:productId N1733adb96c46426fa88254f88eb73eaf
    34 N7eaf7b3aa412470a828b8adbfbfb8262
    35 Neabc1568f57b4656b8bb9dbb90d1a0a0
    36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011969254
    37 https://doi.org/10.1007/s00170-006-0755-4
    38 schema:sdDatePublished 2019-04-11T14:27
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher Nb460007597b542b3ba72f32b523720fe
    41 schema:url http://link.springer.com/10.1007%2Fs00170-006-0755-4
    42 sgo:license sg:explorer/license/
    43 sgo:sdDataset articles
    44 rdf:type schema:ScholarlyArticle
    45 N108dd3e59b5249d4ace7724a73150cd1 rdf:first sg:person.010603331245.18
    46 rdf:rest rdf:nil
    47 N1733adb96c46426fa88254f88eb73eaf schema:name doi
    48 schema:value 10.1007/s00170-006-0755-4
    49 rdf:type schema:PropertyValue
    50 N642f422eaa1b4aeab4cb61083b6d5348 rdf:first sg:person.010005750645.73
    51 rdf:rest N108dd3e59b5249d4ace7724a73150cd1
    52 N7eaf7b3aa412470a828b8adbfbfb8262 schema:name dimensions_id
    53 schema:value pub.1011969254
    54 rdf:type schema:PropertyValue
    55 Na880deef195b47af9667777ee52cdbf2 schema:issueNumber 7-8
    56 rdf:type schema:PublicationIssue
    57 Nae5e71c9f810481899a151a124c2e6f2 schema:volumeNumber 35
    58 rdf:type schema:PublicationVolume
    59 Nb460007597b542b3ba72f32b523720fe schema:name Springer Nature - SN SciGraph project
    60 rdf:type schema:Organization
    61 Neabc1568f57b4656b8bb9dbb90d1a0a0 schema:name readcube_id
    62 schema:value 390744e2e1088a7d5a7b9c092df550f3a1e5261a1f3afbbe81b3d586b0422fe4
    63 rdf:type schema:PropertyValue
    64 Ned9e87fadfb542edb53fd9eb5ba7fd93 rdf:first sg:person.016710140446.84
    65 rdf:rest N642f422eaa1b4aeab4cb61083b6d5348
    66 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Information and Computing Sciences
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Artificial Intelligence and Image Processing
    71 rdf:type schema:DefinedTerm
    72 sg:journal.1043671 schema:issn 0268-3768
    73 1433-3015
    74 schema:name The International Journal of Advanced Manufacturing Technology
    75 rdf:type schema:Periodical
    76 sg:person.010005750645.73 schema:affiliation https://www.grid.ac/institutes/grid.419653.c
    77 schema:familyName Jesuthanam
    78 schema:givenName C. P.
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010005750645.73
    80 rdf:type schema:Person
    81 sg:person.010603331245.18 schema:affiliation https://www.grid.ac/institutes/grid.419653.c
    82 schema:familyName Ashok Kumar
    83 schema:givenName R.
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010603331245.18
    85 rdf:type schema:Person
    86 sg:person.016710140446.84 schema:affiliation https://www.grid.ac/institutes/grid.419653.c
    87 schema:familyName Kumanan
    88 schema:givenName S.
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016710140446.84
    90 rdf:type schema:Person
    91 sg:pub.10.1007/s001700050057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002999214
    92 https://doi.org/10.1007/s001700050057
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/s001700170132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007176890
    95 https://doi.org/10.1007/s001700170132
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/s001700200162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014392793
    98 https://doi.org/10.1007/s001700200162
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1016/0890-6955(95)00057-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006609844
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1016/0890-6955(95)90402-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016083802
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1016/j.ijmachtools.2004.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048226493
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/j.jmatprotec.2004.07.097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027650066
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/s0890-6955(01)00023-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040978058
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/s0890-6955(02)00008-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001047381
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/s0890-6955(02)00078-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032452785
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/s0890-6955(03)00059-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009826678
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/s0890-6955(97)00073-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007195626
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/s0924-0136(02)00060-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026602961
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/s0924-0136(02)00595-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029116000
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/s0924-0136(02)00847-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045941692
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1109/21.256541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061121711
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1109/icnn.1997.614208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093950666
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1115/1.1707035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062073891
    129 rdf:type schema:CreativeWork
    130 https://www.grid.ac/institutes/grid.419653.c schema:alternateName National Institute of Technology Tiruchirappalli
    131 schema:name Department of Production Engineering, National Institute of Technology, Tiruchirappalli, India
    132 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...