Solving single-machine total weighted tardiness problems with sequence-dependent setup times by meta-heuristics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-11

AUTHORS

Shih-Wei Lin, Kuo-Ching Ying

ABSTRACT

Simulated annealing (SA), genetic algorithms (GA), and tabu search (TS) are the three well known meta-heuristics for combinatorial optimization problems. In this paper, single-machine total weighted tardiness problems with sequence-dependent setup times are solved by SA, GA, and TS approaches. A random swap and insertion search is applied in SA, and a mutation operator performed by a greedy local search is used in a GA. Similarly, a swap and an insertion tabu list are adopted in TS. To verify these proposed approaches, computational experiments were conducted on benchmark problem sets. The experimental results show that these approaches find new upper bound values for most benchmark problems within reasonable computational expenses. More... »

PAGES

1183-1190

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00170-006-0693-1

DOI

http://dx.doi.org/10.1007/s00170-006-0693-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025067943


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Huafan University", 
          "id": "https://www.grid.ac/institutes/grid.445071.3", 
          "name": [
            "Department of Information Management, Huafan University, No. 1, Huafan Road, Taipei, Taiwan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Shih-Wei", 
        "id": "sg:person.015224610754.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224610754.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Huafan University", 
          "id": "https://www.grid.ac/institutes/grid.445071.3", 
          "name": [
            "Department of Industrial Engineering and Management Information, Huafan University, No. 1, Huafan Road, Taipei, Taiwan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ying", 
        "givenName": "Kuo-Ching", 
        "id": "sg:person.011544370416.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011544370416.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0305-0483(98)00072-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005099906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-2217(89)90185-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005617489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-2217(89)90185-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005617489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0305-0483(97)00024-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007038270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-218x(90)90103-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008240693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10732-005-6997-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011874230", 
          "https://doi.org/10.1007/s10732-005-6997-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10732-005-6997-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011874230", 
          "https://doi.org/10.1007/s10732-005-6997-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07408179708966311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011962487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1012335604", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-6089-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012335604", 
          "https://doi.org/10.1007/978-1-4615-6089-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-6089-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012335604", 
          "https://doi.org/10.1007/978-1-4615-6089-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0305-0548(93)e0021-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013627176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07408179108963868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020026136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-80784-8_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024163470", 
          "https://doi.org/10.1007/978-3-642-80784-8_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(00)00140-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025105647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/palgrave.jors.2601390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028336097", 
          "https://doi.org/10.1057/palgrave.jors.2601390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0305-0483(98)00042-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032484587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07408179908969810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032782351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/095372800432188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033843293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(87)80008-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035319998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-5060(08)70742-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036482707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0305-0483(99)00050-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038545691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207547708943117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049127114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0305-0548(95)00084-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049713682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1699114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057769646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.220.4598.671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062526985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/ijoc.1.3.190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064706391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/ijoc.2.1.4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064707137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.33.8.1035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064720350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/moor.15.3.483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064723443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.17.4.701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064727375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.20.4.895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064727821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.33.2.363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064729609"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-11", 
    "datePublishedReg": "2007-11-01", 
    "description": "Simulated annealing (SA), genetic algorithms (GA), and tabu search (TS) are the three well known meta-heuristics for combinatorial optimization problems. In this paper, single-machine total weighted tardiness problems with sequence-dependent setup times are solved by SA, GA, and TS approaches. A random swap and insertion search is applied in SA, and a mutation operator performed by a greedy local search is used in a GA. Similarly, a swap and an insertion tabu list are adopted in TS. To verify these proposed approaches, computational experiments were conducted on benchmark problem sets. The experimental results show that these approaches find new upper bound values for most benchmark problems within reasonable computational expenses.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00170-006-0693-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043671", 
        "issn": [
          "0268-3768", 
          "1433-3015"
        ], 
        "name": "The International Journal of Advanced Manufacturing Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11-12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "name": "Solving single-machine total weighted tardiness problems with sequence-dependent setup times by meta-heuristics", 
    "pagination": "1183-1190", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "776c8a0dd5aed5223795324433b01929d4d3ae29d9dccd68e971d2917b12cb4e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00170-006-0693-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025067943"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00170-006-0693-1", 
      "https://app.dimensions.ai/details/publication/pub.1025067943"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13071_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00170-006-0693-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-006-0693-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-006-0693-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-006-0693-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-006-0693-1'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00170-006-0693-1 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author Ne4c5d558ff284257836e519af90f9401
4 schema:citation sg:pub.10.1007/978-1-4615-6089-0
5 sg:pub.10.1007/978-3-642-80784-8_2
6 sg:pub.10.1007/s10732-005-6997-8
7 sg:pub.10.1057/palgrave.jors.2601390
8 https://app.dimensions.ai/details/publication/pub.1012335604
9 https://doi.org/10.1016/0166-218x(90)90103-j
10 https://doi.org/10.1016/0305-0548(93)e0021-k
11 https://doi.org/10.1016/0305-0548(95)00084-4
12 https://doi.org/10.1016/0377-2217(89)90185-9
13 https://doi.org/10.1016/s0167-5060(08)70742-8
14 https://doi.org/10.1016/s0305-0483(97)00024-8
15 https://doi.org/10.1016/s0305-0483(98)00042-5
16 https://doi.org/10.1016/s0305-0483(98)00072-3
17 https://doi.org/10.1016/s0305-0483(99)00050-x
18 https://doi.org/10.1016/s0377-2217(00)00140-5
19 https://doi.org/10.1016/s0377-2217(87)80008-5
20 https://doi.org/10.1063/1.1699114
21 https://doi.org/10.1080/00207547708943117
22 https://doi.org/10.1080/07408179108963868
23 https://doi.org/10.1080/07408179708966311
24 https://doi.org/10.1080/07408179908969810
25 https://doi.org/10.1080/095372800432188
26 https://doi.org/10.1126/science.220.4598.671
27 https://doi.org/10.1287/ijoc.1.3.190
28 https://doi.org/10.1287/ijoc.2.1.4
29 https://doi.org/10.1287/mnsc.33.8.1035
30 https://doi.org/10.1287/moor.15.3.483
31 https://doi.org/10.1287/opre.17.4.701
32 https://doi.org/10.1287/opre.20.4.895
33 https://doi.org/10.1287/opre.33.2.363
34 schema:datePublished 2007-11
35 schema:datePublishedReg 2007-11-01
36 schema:description Simulated annealing (SA), genetic algorithms (GA), and tabu search (TS) are the three well known meta-heuristics for combinatorial optimization problems. In this paper, single-machine total weighted tardiness problems with sequence-dependent setup times are solved by SA, GA, and TS approaches. A random swap and insertion search is applied in SA, and a mutation operator performed by a greedy local search is used in a GA. Similarly, a swap and an insertion tabu list are adopted in TS. To verify these proposed approaches, computational experiments were conducted on benchmark problem sets. The experimental results show that these approaches find new upper bound values for most benchmark problems within reasonable computational expenses.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N1a5df7fa02bc483ca6d7dac479645800
41 Nf72d085520744051a75bb98937a76c74
42 sg:journal.1043671
43 schema:name Solving single-machine total weighted tardiness problems with sequence-dependent setup times by meta-heuristics
44 schema:pagination 1183-1190
45 schema:productId N30bc3e2afc7e4162b79ca0045063eaff
46 N788ed62d238947858c3e3f0972b21b9b
47 Nf8064033062b4d0e86dbd8a98b92f2d5
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025067943
49 https://doi.org/10.1007/s00170-006-0693-1
50 schema:sdDatePublished 2019-04-11T14:26
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N44c46b948e7a412da017f7fee264bcc0
53 schema:url http://link.springer.com/10.1007%2Fs00170-006-0693-1
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N1a5df7fa02bc483ca6d7dac479645800 schema:issueNumber 11-12
58 rdf:type schema:PublicationIssue
59 N30bc3e2afc7e4162b79ca0045063eaff schema:name doi
60 schema:value 10.1007/s00170-006-0693-1
61 rdf:type schema:PropertyValue
62 N44c46b948e7a412da017f7fee264bcc0 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N788ed62d238947858c3e3f0972b21b9b schema:name readcube_id
65 schema:value 776c8a0dd5aed5223795324433b01929d4d3ae29d9dccd68e971d2917b12cb4e
66 rdf:type schema:PropertyValue
67 Ne4c5d558ff284257836e519af90f9401 rdf:first sg:person.015224610754.94
68 rdf:rest Nfdc7a83be89c4ed28d94113e73fddaf6
69 Nf72d085520744051a75bb98937a76c74 schema:volumeNumber 34
70 rdf:type schema:PublicationVolume
71 Nf8064033062b4d0e86dbd8a98b92f2d5 schema:name dimensions_id
72 schema:value pub.1025067943
73 rdf:type schema:PropertyValue
74 Nfdc7a83be89c4ed28d94113e73fddaf6 rdf:first sg:person.011544370416.04
75 rdf:rest rdf:nil
76 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
77 schema:name Information and Computing Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
80 schema:name Computation Theory and Mathematics
81 rdf:type schema:DefinedTerm
82 sg:journal.1043671 schema:issn 0268-3768
83 1433-3015
84 schema:name The International Journal of Advanced Manufacturing Technology
85 rdf:type schema:Periodical
86 sg:person.011544370416.04 schema:affiliation https://www.grid.ac/institutes/grid.445071.3
87 schema:familyName Ying
88 schema:givenName Kuo-Ching
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011544370416.04
90 rdf:type schema:Person
91 sg:person.015224610754.94 schema:affiliation https://www.grid.ac/institutes/grid.445071.3
92 schema:familyName Lin
93 schema:givenName Shih-Wei
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224610754.94
95 rdf:type schema:Person
96 sg:pub.10.1007/978-1-4615-6089-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012335604
97 https://doi.org/10.1007/978-1-4615-6089-0
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/978-3-642-80784-8_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024163470
100 https://doi.org/10.1007/978-3-642-80784-8_2
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s10732-005-6997-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011874230
103 https://doi.org/10.1007/s10732-005-6997-8
104 rdf:type schema:CreativeWork
105 sg:pub.10.1057/palgrave.jors.2601390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028336097
106 https://doi.org/10.1057/palgrave.jors.2601390
107 rdf:type schema:CreativeWork
108 https://app.dimensions.ai/details/publication/pub.1012335604 schema:CreativeWork
109 https://doi.org/10.1016/0166-218x(90)90103-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1008240693
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0305-0548(93)e0021-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1013627176
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0305-0548(95)00084-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049713682
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/0377-2217(89)90185-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005617489
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/s0167-5060(08)70742-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036482707
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/s0305-0483(97)00024-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007038270
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s0305-0483(98)00042-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032484587
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/s0305-0483(98)00072-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005099906
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s0305-0483(99)00050-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038545691
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/s0377-2217(00)00140-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025105647
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/s0377-2217(87)80008-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035319998
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1063/1.1699114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057769646
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1080/00207547708943117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049127114
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1080/07408179108963868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020026136
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1080/07408179708966311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011962487
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1080/07408179908969810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032782351
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1080/095372800432188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033843293
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1126/science.220.4598.671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062526985
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1287/ijoc.1.3.190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064706391
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1287/ijoc.2.1.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064707137
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1287/mnsc.33.8.1035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064720350
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1287/moor.15.3.483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064723443
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1287/opre.17.4.701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064727375
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1287/opre.20.4.895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064727821
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1287/opre.33.2.363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064729609
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.445071.3 schema:alternateName Huafan University
160 schema:name Department of Industrial Engineering and Management Information, Huafan University, No. 1, Huafan Road, Taipei, Taiwan, People’s Republic of China
161 Department of Information Management, Huafan University, No. 1, Huafan Road, Taipei, Taiwan, People’s Republic of China
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...