Irregular shapes classification by back-propagation neural networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-11

AUTHORS

Shih-Wei Lin, Shuo-Yan Chou, Shih-Chieh Chen

ABSTRACT

This paper proposes a back-propagation neural network approach to classify irregular shapes by their convex hulls and brightness in automated production lines. An image-based defect detection and classification system is established, which would examine the quality of rolls of aluminum foil and determine the type of defects, such as bolt, fracture, scratch, or spot on the aluminum foil. The developed approach is capable of performing image acquisition, image processing, defect detection and recognition, and, subsequently, the classification of the aluminum foil sheets by a back-propagation neural network. In order to verify the effectiveness of the developed approach, ten-fold cross-validation is used. The experimental results show that, using a small number of training iterations, the average accuracy rate of classification reaches 96.4%. Thus, the developed approach can be used to replace manual visual inspection for process control and process improvement, which significantly reduces the cost of labor and increases the consistency of product quality. More... »

PAGES

1164-1172

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00170-006-0667-3

DOI

http://dx.doi.org/10.1007/s00170-006-0667-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047200316


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Huafan University", 
          "id": "https://www.grid.ac/institutes/grid.445071.3", 
          "name": [
            "Department of Information Management, Huafan University, No. 1, Huafan Rd., Taipei, Taiwan, Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Shih-Wei", 
        "id": "sg:person.015224610754.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224610754.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Taiwan University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.45907.3f", 
          "name": [
            "Department of Industrial Management, National Taiwan University of Science and Technology, No. 43, Keelung Rd. Sec. 4, Taipei, Taiwan, Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chou", 
        "givenName": "Shuo-Yan", 
        "id": "sg:person.016704702455.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016704702455.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Huafan University", 
          "id": "https://www.grid.ac/institutes/grid.445071.3", 
          "name": [
            "Department of Information Management, Huafan University, No. 1, Huafan Rd., Taipei, Taiwan, Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Shih-Chieh", 
        "id": "sg:person.015532325677.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015532325677.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s001700050141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000699807", 
          "https://doi.org/10.1007/s001700050141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001700050045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007934012", 
          "https://doi.org/10.1007/s001700050045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01239616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012077732", 
          "https://doi.org/10.1007/bf01239616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01239616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012077732", 
          "https://doi.org/10.1007/bf01239616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0952-1976(97)00017-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017286860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/322276.322289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025231628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009752403260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028840786", 
          "https://doi.org/10.1023/a:1009752403260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8655(91)90028-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031548957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0278-6125(94)90034-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031553966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0255(96)00047-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032347307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8659.1988.tb00608.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045507835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-3615(94)90043-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046360838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-3615(94)90043-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046360838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0734-189x(85)90125-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048774763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/rtim.2001.0231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048939725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/cviu.1995.1049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052461654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2005.846882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061609454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/004051750007000712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063691715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/004051750007000712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063691715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.1992.202051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086350388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icisip.2005.1529496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093379893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.1996.560821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093934588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/nssmic.1999.845819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094511784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13031/2013.15002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1097010564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ic:20050327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098765429"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-11", 
    "datePublishedReg": "2007-11-01", 
    "description": "This paper proposes a back-propagation neural network approach to classify irregular shapes by their convex hulls and brightness in automated production lines. An image-based defect detection and classification system is established, which would examine the quality of rolls of aluminum foil and determine the type of defects, such as bolt, fracture, scratch, or spot on the aluminum foil. The developed approach is capable of performing image acquisition, image processing, defect detection and recognition, and, subsequently, the classification of the aluminum foil sheets by a back-propagation neural network. In order to verify the effectiveness of the developed approach, ten-fold cross-validation is used. The experimental results show that, using a small number of training iterations, the average accuracy rate of classification reaches 96.4%. Thus, the developed approach can be used to replace manual visual inspection for process control and process improvement, which significantly reduces the cost of labor and increases the consistency of product quality.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00170-006-0667-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043671", 
        "issn": [
          "0268-3768", 
          "1433-3015"
        ], 
        "name": "The International Journal of Advanced Manufacturing Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11-12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "name": "Irregular shapes classification by back-propagation neural networks", 
    "pagination": "1164-1172", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e0d8d96db87b360d50d05816768e41e1f8172ed8946f500b0004b8de927533e0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00170-006-0667-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047200316"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00170-006-0667-3", 
      "https://app.dimensions.ai/details/publication/pub.1047200316"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13087_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00170-006-0667-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-006-0667-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-006-0667-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-006-0667-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-006-0667-3'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00170-006-0667-3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N311794ca586e4ad1b2e0eb0b6a369cdd
4 schema:citation sg:pub.10.1007/bf01239616
5 sg:pub.10.1007/s001700050045
6 sg:pub.10.1007/s001700050141
7 sg:pub.10.1023/a:1009752403260
8 https://doi.org/10.1006/cviu.1995.1049
9 https://doi.org/10.1006/rtim.2001.0231
10 https://doi.org/10.1016/0020-0255(96)00047-3
11 https://doi.org/10.1016/0166-3615(94)90043-4
12 https://doi.org/10.1016/0167-8655(91)90028-k
13 https://doi.org/10.1016/0278-6125(94)90034-5
14 https://doi.org/10.1016/0734-189x(85)90125-2
15 https://doi.org/10.1016/s0952-1976(97)00017-1
16 https://doi.org/10.1049/ic:20050327
17 https://doi.org/10.1109/icip.1996.560821
18 https://doi.org/10.1109/icisip.2005.1529496
19 https://doi.org/10.1109/icpr.1992.202051
20 https://doi.org/10.1109/nssmic.1999.845819
21 https://doi.org/10.1109/tgrs.2005.846882
22 https://doi.org/10.1111/j.1467-8659.1988.tb00608.x
23 https://doi.org/10.1145/322276.322289
24 https://doi.org/10.1177/004051750007000712
25 https://doi.org/10.13031/2013.15002
26 schema:datePublished 2007-11
27 schema:datePublishedReg 2007-11-01
28 schema:description This paper proposes a back-propagation neural network approach to classify irregular shapes by their convex hulls and brightness in automated production lines. An image-based defect detection and classification system is established, which would examine the quality of rolls of aluminum foil and determine the type of defects, such as bolt, fracture, scratch, or spot on the aluminum foil. The developed approach is capable of performing image acquisition, image processing, defect detection and recognition, and, subsequently, the classification of the aluminum foil sheets by a back-propagation neural network. In order to verify the effectiveness of the developed approach, ten-fold cross-validation is used. The experimental results show that, using a small number of training iterations, the average accuracy rate of classification reaches 96.4%. Thus, the developed approach can be used to replace manual visual inspection for process control and process improvement, which significantly reduces the cost of labor and increases the consistency of product quality.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N2864c7abe35f4e1aa8099197fdfc65a4
33 Nb923b558b10848468e4b0e94af83ebd6
34 sg:journal.1043671
35 schema:name Irregular shapes classification by back-propagation neural networks
36 schema:pagination 1164-1172
37 schema:productId N5c93718d6ee347848bf252307f5ea3cc
38 N7e8a78ee70ce44d08f6a03e355f30651
39 Na827bbd48158486aba1752ab3dcbd227
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047200316
41 https://doi.org/10.1007/s00170-006-0667-3
42 schema:sdDatePublished 2019-04-11T14:29
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nf34bf790329843969e181f9679006a98
45 schema:url http://link.springer.com/10.1007%2Fs00170-006-0667-3
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N2864c7abe35f4e1aa8099197fdfc65a4 schema:volumeNumber 34
50 rdf:type schema:PublicationVolume
51 N311794ca586e4ad1b2e0eb0b6a369cdd rdf:first sg:person.015224610754.94
52 rdf:rest N359cea780c7149499686060087423928
53 N359cea780c7149499686060087423928 rdf:first sg:person.016704702455.18
54 rdf:rest Nfea5539f7dbc48f4b7f16c3a58536462
55 N5c93718d6ee347848bf252307f5ea3cc schema:name dimensions_id
56 schema:value pub.1047200316
57 rdf:type schema:PropertyValue
58 N7e8a78ee70ce44d08f6a03e355f30651 schema:name readcube_id
59 schema:value e0d8d96db87b360d50d05816768e41e1f8172ed8946f500b0004b8de927533e0
60 rdf:type schema:PropertyValue
61 Na827bbd48158486aba1752ab3dcbd227 schema:name doi
62 schema:value 10.1007/s00170-006-0667-3
63 rdf:type schema:PropertyValue
64 Nb923b558b10848468e4b0e94af83ebd6 schema:issueNumber 11-12
65 rdf:type schema:PublicationIssue
66 Nf34bf790329843969e181f9679006a98 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Nfea5539f7dbc48f4b7f16c3a58536462 rdf:first sg:person.015532325677.28
69 rdf:rest rdf:nil
70 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
71 schema:name Information and Computing Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
74 schema:name Artificial Intelligence and Image Processing
75 rdf:type schema:DefinedTerm
76 sg:journal.1043671 schema:issn 0268-3768
77 1433-3015
78 schema:name The International Journal of Advanced Manufacturing Technology
79 rdf:type schema:Periodical
80 sg:person.015224610754.94 schema:affiliation https://www.grid.ac/institutes/grid.445071.3
81 schema:familyName Lin
82 schema:givenName Shih-Wei
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224610754.94
84 rdf:type schema:Person
85 sg:person.015532325677.28 schema:affiliation https://www.grid.ac/institutes/grid.445071.3
86 schema:familyName Chen
87 schema:givenName Shih-Chieh
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015532325677.28
89 rdf:type schema:Person
90 sg:person.016704702455.18 schema:affiliation https://www.grid.ac/institutes/grid.45907.3f
91 schema:familyName Chou
92 schema:givenName Shuo-Yan
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016704702455.18
94 rdf:type schema:Person
95 sg:pub.10.1007/bf01239616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012077732
96 https://doi.org/10.1007/bf01239616
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s001700050045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007934012
99 https://doi.org/10.1007/s001700050045
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s001700050141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000699807
102 https://doi.org/10.1007/s001700050141
103 rdf:type schema:CreativeWork
104 sg:pub.10.1023/a:1009752403260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028840786
105 https://doi.org/10.1023/a:1009752403260
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1006/cviu.1995.1049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052461654
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1006/rtim.2001.0231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048939725
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0020-0255(96)00047-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032347307
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0166-3615(94)90043-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046360838
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/0167-8655(91)90028-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1031548957
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0278-6125(94)90034-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031553966
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0734-189x(85)90125-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048774763
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s0952-1976(97)00017-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017286860
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1049/ic:20050327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098765429
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/icip.1996.560821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093934588
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/icisip.2005.1529496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093379893
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/icpr.1992.202051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086350388
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/nssmic.1999.845819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094511784
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/tgrs.2005.846882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609454
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1111/j.1467-8659.1988.tb00608.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045507835
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1145/322276.322289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025231628
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1177/004051750007000712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063691715
140 rdf:type schema:CreativeWork
141 https://doi.org/10.13031/2013.15002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1097010564
142 rdf:type schema:CreativeWork
143 https://www.grid.ac/institutes/grid.445071.3 schema:alternateName Huafan University
144 schema:name Department of Information Management, Huafan University, No. 1, Huafan Rd., Taipei, Taiwan, Republic of China
145 rdf:type schema:Organization
146 https://www.grid.ac/institutes/grid.45907.3f schema:alternateName National Taiwan University of Science and Technology
147 schema:name Department of Industrial Management, National Taiwan University of Science and Technology, No. 43, Keelung Rd. Sec. 4, Taipei, Taiwan, Republic of China
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...