Effects of cutting edge geometry, workpiece hardness, feed rate and cutting speed on surface roughness and forces in finish turning ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-02

AUTHORS

Tugrul Özel, Tsu-Kong Hsu, Erol Zeren

ABSTRACT

In this study, the effects of cutting edge geometry, workpiece hardness, feed rate and cutting speed on surface roughness and resultant forces in the finish hard turning of AISI H13 steel were experimentally investigated. Cubic boron nitrite inserts with two distinct edge preparations and through-hardened AISI H13 steel bars were used. Four-factor (hardness, edge geometry, feed rate and cutting speed) two-level fractional experiments were conducted and statistical analysis of variance was performed. During hard turning experiments, three components of tool forces and roughness of the machined surface were measured. This study shows that the effects of workpiece hardness, cutting edge geometry, feed rate and cutting speed on surface roughness are statistically significant. The effects of two-factor interactions of the edge geometry and the workpiece hardness, the edge geometry and the feed rate, and the cutting speed and feed rate also appeared to be important. Especially honed edge geometry and lower workpiece surface hardness resulted in better surface roughness. Cutting-edge geometry, workpiece hardness and cutting speed are found to be affecting force components. The lower workpiece surface hardness and honed edge geometry resulted in lower tangential and radial forces. More... »

PAGES

262-269

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00170-003-1878-5

DOI

http://dx.doi.org/10.1007/s00170-003-1878-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003833523


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rutgers University", 
          "id": "https://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Department of Industrial and Systems Engineering, Rutgers, The State University of New Jersey, 08854, Piscataway, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u00d6zel", 
        "givenName": "Tugrul", 
        "id": "sg:person.014677266705.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014677266705.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rutgers University", 
          "id": "https://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Department of Industrial and Systems Engineering, Rutgers, The State University of New Jersey, 08854, Piscataway, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hsu", 
        "givenName": "Tsu-Kong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rutgers University", 
          "id": "https://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Department of Industrial and Systems Engineering, Rutgers, The State University of New Jersey, 08854, Piscataway, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zeren", 
        "givenName": "Erol", 
        "id": "sg:person.015334402145.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015334402145.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)62387-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000243556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)62788-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002440236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-0136(99)00111-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011817995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)61003-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013998470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)62385-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018805159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)62064-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020514890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-0136(97)00081-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021273816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1648(00)00528-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021653289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)63019-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029213564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)63132-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032848464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)62789-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033159824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)60768-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033576911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-8506(16)30164-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036660861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-0136(02)00070-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037417195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-0136(02)00070-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037417195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)63020-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038512140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)60896-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041275686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1648(97)00139-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042732732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)60877-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043950105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/mst.1987.3.4.299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046853781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-0136(03)00278-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051154214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-0136(03)00278-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051154214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)62883-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052875247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)63131-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053669985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1285891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062067088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1286369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062067190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1413775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062069601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1455643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062070195"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-02", 
    "datePublishedReg": "2005-02-01", 
    "description": "In this study, the effects of cutting edge geometry, workpiece hardness, feed rate and cutting speed on surface roughness and resultant forces in the finish hard turning of AISI H13 steel were experimentally investigated. Cubic boron nitrite inserts with two distinct edge preparations and through-hardened AISI H13 steel bars were used. Four-factor (hardness, edge geometry, feed rate and cutting speed) two-level fractional experiments were conducted and statistical analysis of variance was performed. During hard turning experiments, three components of tool forces and roughness of the machined surface were measured. This study shows that the effects of workpiece hardness, cutting edge geometry, feed rate and cutting speed on surface roughness are statistically significant. The effects of two-factor interactions of the edge geometry and the workpiece hardness, the edge geometry and the feed rate, and the cutting speed and feed rate also appeared to be important. Especially honed edge geometry and lower workpiece surface hardness resulted in better surface roughness. Cutting-edge geometry, workpiece hardness and cutting speed are found to be affecting force components. The lower workpiece surface hardness and honed edge geometry resulted in lower tangential and radial forces.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00170-003-1878-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043671", 
        "issn": [
          "0268-3768", 
          "1433-3015"
        ], 
        "name": "The International Journal of Advanced Manufacturing Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "Effects of cutting edge geometry, workpiece hardness, feed rate and cutting speed on surface roughness and forces in finish turning of hardened AISI H13 steel", 
    "pagination": "262-269", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "12439ee639c122ffde7644cd1d471288023d7179da9acbd015c2f02e9067463f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00170-003-1878-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003833523"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00170-003-1878-5", 
      "https://app.dimensions.ai/details/publication/pub.1003833523"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13084_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00170-003-1878-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-003-1878-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-003-1878-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-003-1878-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-003-1878-5'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00170-003-1878-5 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N315177f3ba394662aa9dbd2904733071
4 schema:citation https://doi.org/10.1016/s0007-8506(07)60768-9
5 https://doi.org/10.1016/s0007-8506(07)60877-4
6 https://doi.org/10.1016/s0007-8506(07)60896-8
7 https://doi.org/10.1016/s0007-8506(07)61003-8
8 https://doi.org/10.1016/s0007-8506(07)62064-2
9 https://doi.org/10.1016/s0007-8506(07)62385-3
10 https://doi.org/10.1016/s0007-8506(07)62387-7
11 https://doi.org/10.1016/s0007-8506(07)62788-7
12 https://doi.org/10.1016/s0007-8506(07)62789-9
13 https://doi.org/10.1016/s0007-8506(07)62883-2
14 https://doi.org/10.1016/s0007-8506(07)63019-4
15 https://doi.org/10.1016/s0007-8506(07)63020-0
16 https://doi.org/10.1016/s0007-8506(07)63131-x
17 https://doi.org/10.1016/s0007-8506(07)63132-1
18 https://doi.org/10.1016/s0007-8506(16)30164-0
19 https://doi.org/10.1016/s0043-1648(00)00528-7
20 https://doi.org/10.1016/s0043-1648(97)00139-7
21 https://doi.org/10.1016/s0924-0136(02)00070-5
22 https://doi.org/10.1016/s0924-0136(03)00278-4
23 https://doi.org/10.1016/s0924-0136(97)00081-2
24 https://doi.org/10.1016/s0924-0136(99)00111-9
25 https://doi.org/10.1115/1.1285891
26 https://doi.org/10.1115/1.1286369
27 https://doi.org/10.1115/1.1413775
28 https://doi.org/10.1115/1.1455643
29 https://doi.org/10.1179/mst.1987.3.4.299
30 schema:datePublished 2005-02
31 schema:datePublishedReg 2005-02-01
32 schema:description In this study, the effects of cutting edge geometry, workpiece hardness, feed rate and cutting speed on surface roughness and resultant forces in the finish hard turning of AISI H13 steel were experimentally investigated. Cubic boron nitrite inserts with two distinct edge preparations and through-hardened AISI H13 steel bars were used. Four-factor (hardness, edge geometry, feed rate and cutting speed) two-level fractional experiments were conducted and statistical analysis of variance was performed. During hard turning experiments, three components of tool forces and roughness of the machined surface were measured. This study shows that the effects of workpiece hardness, cutting edge geometry, feed rate and cutting speed on surface roughness are statistically significant. The effects of two-factor interactions of the edge geometry and the workpiece hardness, the edge geometry and the feed rate, and the cutting speed and feed rate also appeared to be important. Especially honed edge geometry and lower workpiece surface hardness resulted in better surface roughness. Cutting-edge geometry, workpiece hardness and cutting speed are found to be affecting force components. The lower workpiece surface hardness and honed edge geometry resulted in lower tangential and radial forces.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N50987b69f31943d2b7ca457f7bbc2bc2
37 Nd5ba01d0b71844959463040812141174
38 sg:journal.1043671
39 schema:name Effects of cutting edge geometry, workpiece hardness, feed rate and cutting speed on surface roughness and forces in finish turning of hardened AISI H13 steel
40 schema:pagination 262-269
41 schema:productId N05e7cc203dc2432eb5c4378f2146857e
42 N5e195295931e4221aaf86bfd792c91a9
43 Ne8d47f1408ca4adeb82aa0e1efb5a982
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003833523
45 https://doi.org/10.1007/s00170-003-1878-5
46 schema:sdDatePublished 2019-04-11T14:28
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N4f4251f6ce29431b8caa02f2ac433fc8
49 schema:url http://link.springer.com/10.1007%2Fs00170-003-1878-5
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N05e7cc203dc2432eb5c4378f2146857e schema:name dimensions_id
54 schema:value pub.1003833523
55 rdf:type schema:PropertyValue
56 N2de7ff805aaf4fe9a53cfadcc41380f7 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
57 schema:familyName Hsu
58 schema:givenName Tsu-Kong
59 rdf:type schema:Person
60 N315177f3ba394662aa9dbd2904733071 rdf:first sg:person.014677266705.61
61 rdf:rest Nabb1d68345ec4fbca4a4a6074c9eb113
62 N4799b8c212a34bacbbbb0cb2b1de7cc2 rdf:first sg:person.015334402145.03
63 rdf:rest rdf:nil
64 N4f4251f6ce29431b8caa02f2ac433fc8 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N50987b69f31943d2b7ca457f7bbc2bc2 schema:volumeNumber 25
67 rdf:type schema:PublicationVolume
68 N5e195295931e4221aaf86bfd792c91a9 schema:name readcube_id
69 schema:value 12439ee639c122ffde7644cd1d471288023d7179da9acbd015c2f02e9067463f
70 rdf:type schema:PropertyValue
71 Nabb1d68345ec4fbca4a4a6074c9eb113 rdf:first N2de7ff805aaf4fe9a53cfadcc41380f7
72 rdf:rest N4799b8c212a34bacbbbb0cb2b1de7cc2
73 Nd5ba01d0b71844959463040812141174 schema:issueNumber 3-4
74 rdf:type schema:PublicationIssue
75 Ne8d47f1408ca4adeb82aa0e1efb5a982 schema:name doi
76 schema:value 10.1007/s00170-003-1878-5
77 rdf:type schema:PropertyValue
78 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
79 schema:name Chemical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
82 schema:name Physical Chemistry (incl. Structural)
83 rdf:type schema:DefinedTerm
84 sg:journal.1043671 schema:issn 0268-3768
85 1433-3015
86 schema:name The International Journal of Advanced Manufacturing Technology
87 rdf:type schema:Periodical
88 sg:person.014677266705.61 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
89 schema:familyName Özel
90 schema:givenName Tugrul
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014677266705.61
92 rdf:type schema:Person
93 sg:person.015334402145.03 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
94 schema:familyName Zeren
95 schema:givenName Erol
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015334402145.03
97 rdf:type schema:Person
98 https://doi.org/10.1016/s0007-8506(07)60768-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033576911
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/s0007-8506(07)60877-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043950105
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/s0007-8506(07)60896-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041275686
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/s0007-8506(07)61003-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013998470
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/s0007-8506(07)62064-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020514890
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/s0007-8506(07)62385-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018805159
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/s0007-8506(07)62387-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000243556
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/s0007-8506(07)62788-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002440236
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/s0007-8506(07)62789-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033159824
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/s0007-8506(07)62883-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052875247
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/s0007-8506(07)63019-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029213564
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/s0007-8506(07)63020-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038512140
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/s0007-8506(07)63131-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053669985
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/s0007-8506(07)63132-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032848464
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s0007-8506(16)30164-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036660861
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0043-1648(00)00528-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021653289
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0043-1648(97)00139-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042732732
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0924-0136(02)00070-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037417195
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0924-0136(03)00278-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051154214
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0924-0136(97)00081-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021273816
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0924-0136(99)00111-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011817995
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1115/1.1285891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062067088
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1115/1.1286369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062067190
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1115/1.1413775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062069601
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1115/1.1455643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062070195
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1179/mst.1987.3.4.299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046853781
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.430387.b schema:alternateName Rutgers University
151 schema:name Department of Industrial and Systems Engineering, Rutgers, The State University of New Jersey, 08854, Piscataway, New Jersey, USA
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...