Simultaneous optimisation of the broadband tap coupler optical performance based on neural networks and exponential desirability functions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-06

AUTHORS

C.-M. Hsu, C.-T. Su, D. Liao

ABSTRACT

This study presents an integrated procedure using neural networks and exponential desirability functions to resolve multi-response parameter design problems. The proposed procedure is illustrated through optimising the parameter settings in the fused bi-conic taper process to improve the performance and reliability of the 1% (1/99) single-window broadband tap coupler. The proposed solution procedure was implemented on a Taiwanese manufacturer of fibre optic passive components and the implementation results demonstrated its practicability and effectiveness. A pilot run of the fused process revealed that the average defect rate was reduced to just 2.5%, from a previous level of more than 35%. Annual savings from implementing the proposed procedure are expected to exceed 0.5–1.0 million US dollars. This investigation has been extensively and successfully applied to develop optimal fuse parameters for other coupling ratio tap couplers. More... »

PAGES

896-902

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00170-003-1733-8

DOI

http://dx.doi.org/10.1007/s00170-003-1733-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048531058


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Minghsin University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.440374.0", 
          "name": [
            "Department of Business Administration, Minghsin University of Science and Technology, Hsinchu, Taiwan R.O.C."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hsu", 
        "givenName": "C.-M.", 
        "id": "sg:person.012142213203.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012142213203.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Chiao Tung University", 
          "id": "https://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Department of Industrial Engineering and Management, National Chiao Tung University, Hsinchu, Taiwan R.O.C."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Su", 
        "givenName": "C.-T.", 
        "id": "sg:person.016137101441.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137101441.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Chiao Tung University", 
          "id": "https://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Department of Industrial Engineering and Management, National Chiao Tung University, Hsinchu, Taiwan R.O.C."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liao", 
        "givenName": "D.", 
        "id": "sg:person.015047530541.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015047530541.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0165-0114(93)90505-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001135979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(93)90505-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001135979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.963074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007060072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1099-1638(200001/02)16:1<3::aid-qre276>3.0.co;2-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007831117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1538-7305.1983.tb02298.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009107621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/02656719710170639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014578185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07408179308964286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016583936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9876.00194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021926481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9876.00194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021926481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/001316446002000116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027947482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/001316446002000116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027947482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.163768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041569900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qre.4680040211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046460389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00401706.1981.10487681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058285445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.28.1.225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064729051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00224065.1980.11980968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101183642"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-06", 
    "datePublishedReg": "2004-06-01", 
    "description": "This study presents an integrated procedure using neural networks and exponential desirability functions to resolve multi-response parameter design problems. The proposed procedure is illustrated through optimising the parameter settings in the fused bi-conic taper process to improve the performance and reliability of the 1% (1/99) single-window broadband tap coupler. The proposed solution procedure was implemented on a Taiwanese manufacturer of fibre optic passive components and the implementation results demonstrated its practicability and effectiveness. A pilot run of the fused process revealed that the average defect rate was reduced to just 2.5%, from a previous level of more than 35%. Annual savings from implementing the proposed procedure are expected to exceed 0.5\u20131.0 million US dollars. This investigation has been extensively and successfully applied to develop optimal fuse parameters for other coupling ratio tap couplers.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00170-003-1733-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043671", 
        "issn": [
          "0268-3768", 
          "1433-3015"
        ], 
        "name": "The International Journal of Advanced Manufacturing Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11-12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Simultaneous optimisation of the broadband tap coupler optical performance based on neural networks and exponential desirability functions", 
    "pagination": "896-902", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e731a4dda0c9d5e709f3b5bc4932ef7a93ee7c145c7b685a6d037c13b6f52d07"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00170-003-1733-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048531058"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00170-003-1733-8", 
      "https://app.dimensions.ai/details/publication/pub.1048531058"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00170-003-1733-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-003-1733-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-003-1733-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-003-1733-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-003-1733-8'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00170-003-1733-8 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N3c61d54b049b44ddb3c2df5be39a94aa
4 schema:citation https://doi.org/10.1002/(sici)1099-1638(200001/02)16:1<3::aid-qre276>3.0.co;2-w
5 https://doi.org/10.1002/j.1538-7305.1983.tb02298.x
6 https://doi.org/10.1002/qre.4680040211
7 https://doi.org/10.1016/0165-0114(93)90505-c
8 https://doi.org/10.1080/00224065.1980.11980968
9 https://doi.org/10.1080/00401706.1981.10487681
10 https://doi.org/10.1080/07408179308964286
11 https://doi.org/10.1108/02656719710170639
12 https://doi.org/10.1111/1467-9876.00194
13 https://doi.org/10.1117/12.163768
14 https://doi.org/10.1117/12.963074
15 https://doi.org/10.1177/001316446002000116
16 https://doi.org/10.1287/opre.28.1.225
17 schema:datePublished 2004-06
18 schema:datePublishedReg 2004-06-01
19 schema:description This study presents an integrated procedure using neural networks and exponential desirability functions to resolve multi-response parameter design problems. The proposed procedure is illustrated through optimising the parameter settings in the fused bi-conic taper process to improve the performance and reliability of the 1% (1/99) single-window broadband tap coupler. The proposed solution procedure was implemented on a Taiwanese manufacturer of fibre optic passive components and the implementation results demonstrated its practicability and effectiveness. A pilot run of the fused process revealed that the average defect rate was reduced to just 2.5%, from a previous level of more than 35%. Annual savings from implementing the proposed procedure are expected to exceed 0.5–1.0 million US dollars. This investigation has been extensively and successfully applied to develop optimal fuse parameters for other coupling ratio tap couplers.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf Nbceeff2a01c54310bf83fcba251cf021
24 Nd06c698b210a4109a7048e80d63ca451
25 sg:journal.1043671
26 schema:name Simultaneous optimisation of the broadband tap coupler optical performance based on neural networks and exponential desirability functions
27 schema:pagination 896-902
28 schema:productId N07496ab0224b4652a0ebc1c2336df6f8
29 N88aad2a0ebc94de58ccfed3e0cb71c20
30 Nbbe876098b5349ed9dda27402a1834bf
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048531058
32 https://doi.org/10.1007/s00170-003-1733-8
33 schema:sdDatePublished 2019-04-10T19:58
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N5d69572921cd4fb5b162de10957663b9
36 schema:url http://link.springer.com/10.1007%2Fs00170-003-1733-8
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N07496ab0224b4652a0ebc1c2336df6f8 schema:name doi
41 schema:value 10.1007/s00170-003-1733-8
42 rdf:type schema:PropertyValue
43 N39b27cee400842dca8dc282e030604b3 rdf:first sg:person.016137101441.02
44 rdf:rest N9df3aee92773428a98703a7b1aa92f98
45 N3c61d54b049b44ddb3c2df5be39a94aa rdf:first sg:person.012142213203.93
46 rdf:rest N39b27cee400842dca8dc282e030604b3
47 N5d69572921cd4fb5b162de10957663b9 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N88aad2a0ebc94de58ccfed3e0cb71c20 schema:name dimensions_id
50 schema:value pub.1048531058
51 rdf:type schema:PropertyValue
52 N9df3aee92773428a98703a7b1aa92f98 rdf:first sg:person.015047530541.30
53 rdf:rest rdf:nil
54 Nbbe876098b5349ed9dda27402a1834bf schema:name readcube_id
55 schema:value e731a4dda0c9d5e709f3b5bc4932ef7a93ee7c145c7b685a6d037c13b6f52d07
56 rdf:type schema:PropertyValue
57 Nbceeff2a01c54310bf83fcba251cf021 schema:issueNumber 11-12
58 rdf:type schema:PublicationIssue
59 Nd06c698b210a4109a7048e80d63ca451 schema:volumeNumber 23
60 rdf:type schema:PublicationVolume
61 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
62 schema:name Information and Computing Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
65 schema:name Artificial Intelligence and Image Processing
66 rdf:type schema:DefinedTerm
67 sg:journal.1043671 schema:issn 0268-3768
68 1433-3015
69 schema:name The International Journal of Advanced Manufacturing Technology
70 rdf:type schema:Periodical
71 sg:person.012142213203.93 schema:affiliation https://www.grid.ac/institutes/grid.440374.0
72 schema:familyName Hsu
73 schema:givenName C.-M.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012142213203.93
75 rdf:type schema:Person
76 sg:person.015047530541.30 schema:affiliation https://www.grid.ac/institutes/grid.260539.b
77 schema:familyName Liao
78 schema:givenName D.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015047530541.30
80 rdf:type schema:Person
81 sg:person.016137101441.02 schema:affiliation https://www.grid.ac/institutes/grid.260539.b
82 schema:familyName Su
83 schema:givenName C.-T.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137101441.02
85 rdf:type schema:Person
86 https://doi.org/10.1002/(sici)1099-1638(200001/02)16:1<3::aid-qre276>3.0.co;2-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1007831117
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1002/j.1538-7305.1983.tb02298.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009107621
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1002/qre.4680040211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046460389
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/0165-0114(93)90505-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1001135979
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1080/00224065.1980.11980968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101183642
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1080/00401706.1981.10487681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058285445
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1080/07408179308964286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016583936
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1108/02656719710170639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014578185
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1111/1467-9876.00194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021926481
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1117/12.163768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041569900
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1117/12.963074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007060072
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1177/001316446002000116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027947482
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1287/opre.28.1.225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064729051
111 rdf:type schema:CreativeWork
112 https://www.grid.ac/institutes/grid.260539.b schema:alternateName National Chiao Tung University
113 schema:name Department of Industrial Engineering and Management, National Chiao Tung University, Hsinchu, Taiwan R.O.C.
114 rdf:type schema:Organization
115 https://www.grid.ac/institutes/grid.440374.0 schema:alternateName Minghsin University of Science and Technology
116 schema:name Department of Business Administration, Minghsin University of Science and Technology, Hsinchu, Taiwan R.O.C.
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...