A web-based machine-learning algorithm predicting postoperative acute kidney injury after total knee arthroplasty View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-09-03

AUTHORS

Sunho Ko, Changwung Jo, Chong Bum Chang, Yong Seuk Lee, Young-Wan Moon, Jae woo Youm, Hyuk-Soo Han, Myung Chul Lee, Hajeong Lee, Du Hyun Ro

ABSTRACT

PurposeAcute kidney injury (AKI) is a deleterious complication after total knee arthroplasty (TKA). The purposes of this study were to identify preoperative risk factors and develop a web-based prediction model for postoperative AKI, and assess how AKI affected the progression to ESRD.MethodThe study included 5757 patients treated in three tertiary teaching hospitals. The model was developed using data on 5302 patients from two hospitals and externally validated in 455 patients from the third hospital. Eighteen preoperative variables were collected and feature selection was performed. A gradient boosting machine (GBM) was used to predict AKI. A tenfold-stratified area under the curve (AUC) served as the metric for internal validation. Calibration was performed via isotonic regression and evaluated using a calibration plot. End-stage renal disease (ESRD) was followed up for an average of 41.7 months.ResultsAKI develops in up to 10% of patients undergoing TKA, increasing the risk of progression to ESRD. The ESRD odds ratio of AKI patients (compared to non-AKI patients) was 9.8 (95% confidence interval 4.3–22.4). Six key predictors of postoperative AKI were selected: higher preoperative levels of creatinine in serum, the use of general anesthesia, male sex, a higher ASA class (> 3), use of a renin–angiotensin–aldosterone system inhibitor, and no use of tranexamic acid (all p < 0.001). The predictive performance of our model was good (area under the curve 0.78 [95% CI 0.74–0.81] in the developmental cohort and improved in the external validation cohort (0.89). Our model can be accessed at https://safetka.net.ConclusionsA web-based predictive model for AKI after TKA was developed using a machine-learning algorithm featuring six preoperative variables. The model is simple and has been validated to improve both short- and long-term prognoses of TKA patients. Postoperative AKI may lead to ESRD, which surgeons should strive to avoid.Level of evidenceDiagnostic level II. More... »

PAGES

545-554

References to SciGraph publications

  • 2019-06-28. Transfusion after total knee arthroplasty can be predicted using the machine learning algorithm in KNEE SURGERY, SPORTS TRAUMATOLOGY, ARTHROSCOPY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00167-020-06258-0

    DOI

    http://dx.doi.org/10.1007/s00167-020-06258-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1130548646

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/32880677


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Acute Kidney Injury", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Arthroplasty, Replacement, Knee", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Internet", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Machine Learning", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Postoperative Complications", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retrospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Risk Assessment", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Risk Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Seoul National University College of Medicine, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Seoul National University College of Medicine, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ko", 
            "givenName": "Sunho", 
            "id": "sg:person.016633305433.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016633305433.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Seoul National University College of Medicine, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Seoul National University College of Medicine, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jo", 
            "givenName": "Changwung", 
            "id": "sg:person.016035725033.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016035725033.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.412480.b", 
              "name": [
                "Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chang", 
            "givenName": "Chong Bum", 
            "id": "sg:person.0605067426.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605067426.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.412480.b", 
              "name": [
                "Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Yong Seuk", 
            "id": "sg:person.01174720470.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174720470.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Orthopedic Surgery, Samsung Medical Center, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.414964.a", 
              "name": [
                "Department of Orthopedic Surgery, Samsung Medical Center, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moon", 
            "givenName": "Young-Wan", 
            "id": "sg:person.011362034532.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011362034532.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Orthopedic Surgery, Samsung Medical Center, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.414964.a", 
              "name": [
                "Department of Orthopedic Surgery, Samsung Medical Center, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Youm", 
            "givenName": "Jae woo", 
            "id": "sg:person.07567674712.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07567674712.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Orthopedic Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Department of Orthopedic Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Han", 
            "givenName": "Hyuk-Soo", 
            "id": "sg:person.011234154441.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011234154441.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Orthopedic Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Department of Orthopedic Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Myung Chul", 
            "id": "sg:person.01337220140.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337220140.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Hajeong", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Orthopedic Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Department of Orthopedic Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ro", 
            "givenName": "Du Hyun", 
            "id": "sg:person.01322222131.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322222131.16"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00167-019-05602-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117620541", 
              "https://doi.org/10.1007/s00167-019-05602-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-09-03", 
        "datePublishedReg": "2020-09-03", 
        "description": "PurposeAcute kidney injury (AKI) is a deleterious complication after total knee arthroplasty (TKA). The purposes of this study were to identify preoperative risk factors and develop a web-based prediction model for postoperative AKI, and assess how AKI affected the progression to ESRD.MethodThe study included 5757 patients treated in three tertiary teaching hospitals. The model was developed using data on 5302 patients from two hospitals and externally validated in 455 patients from the third hospital. Eighteen preoperative variables were collected and feature selection was performed. A gradient boosting machine (GBM) was used to predict AKI. A tenfold-stratified area under the curve (AUC) served as the metric for internal validation. Calibration was performed via isotonic regression and evaluated using a calibration plot. End-stage renal disease (ESRD) was followed up for an average of 41.7\u00a0months.ResultsAKI develops in up to 10% of patients undergoing TKA, increasing the risk of progression to ESRD. The ESRD odds ratio of AKI patients (compared to non-AKI patients) was 9.8 (95% confidence interval 4.3\u201322.4). Six key predictors of postoperative AKI were selected: higher preoperative levels of creatinine in serum, the use of general anesthesia, male sex, a higher ASA class (>\u20093), use of a renin\u2013angiotensin\u2013aldosterone system inhibitor, and no use of tranexamic acid (all p\u2009<\u20090.001). The predictive performance of our model was good (area under the curve 0.78 [95% CI 0.74\u20130.81] in the developmental cohort and improved in the external validation cohort (0.89). Our model can be accessed at https://safetka.net.ConclusionsA web-based predictive model for AKI after TKA was developed using a machine-learning algorithm featuring six preoperative variables. The model is simple and has been validated to improve both short- and long-term prognoses of TKA patients. Postoperative AKI may lead to ESRD, which surgeons should strive to avoid.Level of evidenceDiagnostic level II.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00167-020-06258-0", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1104512", 
            "issn": [
              "0942-2056", 
              "1433-7347"
            ], 
            "name": "Knee Surgery, Sports Traumatology, Arthroscopy", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "30"
          }
        ], 
        "keywords": [
          "end-stage renal disease", 
          "total knee arthroplasty", 
          "postoperative AKI", 
          "web-based prediction model", 
          "PurposeAcute kidney injury", 
          "higher ASA class", 
          "preoperative risk factors", 
          "aldosterone system inhibitors", 
          "risk of progression", 
          "higher preoperative levels", 
          "tertiary teaching hospital", 
          "AKI patients", 
          "ASA class", 
          "kidney injury", 
          "preoperative levels", 
          "preoperative variables", 
          "renal disease", 
          "tranexamic acid", 
          "deleterious complications", 
          "general anesthesia", 
          "male sex", 
          "system inhibitors", 
          "knee arthroplasty", 
          "risk factors", 
          "teaching hospital", 
          "Third Hospital", 
          "patients", 
          "MethodThe study", 
          "AKI", 
          "hospital", 
          "internal validation", 
          "progression", 
          "ResultsAKI", 
          "key predictors", 
          "complications", 
          "creatinine", 
          "anesthesia", 
          "arthroplasty", 
          "injury", 
          "disease", 
          "serum", 
          "months", 
          "sex", 
          "risk", 
          "predictive performance", 
          "predictors", 
          "inhibitors", 
          "study", 
          "calibration plots", 
          "use", 
          "regression", 
          "factors", 
          "levels", 
          "acid", 
          "average", 
          "isotonic regression", 
          "prediction model", 
          "purpose", 
          "data", 
          "variables", 
          "ratio", 
          "model", 
          "curves", 
          "validation", 
          "area", 
          "selection", 
          "stratified areas", 
          "class", 
          "gradient", 
          "feature selection", 
          "metrics", 
          "plots", 
          "performance", 
          "calibration", 
          "machine"
        ], 
        "name": "A web-based machine-learning algorithm predicting postoperative acute kidney injury after total knee arthroplasty", 
        "pagination": "545-554", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1130548646"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00167-020-06258-0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "32880677"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00167-020-06258-0", 
          "https://app.dimensions.ai/details/publication/pub.1130548646"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_855.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00167-020-06258-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00167-020-06258-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00167-020-06258-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00167-020-06258-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00167-020-06258-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    257 TRIPLES      21 PREDICATES      112 URIs      103 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00167-020-06258-0 schema:about N0fc82e3477d04f54b9ed9ebe4a5911af
    2 N101810d308814c70810c57f8d130260e
    3 N15f9b6f44b654b0289a2f34a50ebb26e
    4 N232ca41557364686a744b7f1cec1bd19
    5 N3a897da77eb94671a88b73cfc3b3862c
    6 N6b0de5ea6bc44f7b93aab594d6186294
    7 N7ae6944724314e2a9c5005ab97309644
    8 Nca76bd6eb9d94279bb0b3987f9847d2a
    9 Nd1455b931c484052b1f5dd0cb8470e3f
    10 Ne6c94e3f1ac24c19b7d4c25d029a3a90
    11 Nede8734f85da4d33a84ff0cd862f2214
    12 anzsrc-for:11
    13 anzsrc-for:1103
    14 schema:author N30b73155160e46e495ee6a1ebc5b952e
    15 schema:citation sg:pub.10.1007/s00167-019-05602-3
    16 schema:datePublished 2020-09-03
    17 schema:datePublishedReg 2020-09-03
    18 schema:description PurposeAcute kidney injury (AKI) is a deleterious complication after total knee arthroplasty (TKA). The purposes of this study were to identify preoperative risk factors and develop a web-based prediction model for postoperative AKI, and assess how AKI affected the progression to ESRD.MethodThe study included 5757 patients treated in three tertiary teaching hospitals. The model was developed using data on 5302 patients from two hospitals and externally validated in 455 patients from the third hospital. Eighteen preoperative variables were collected and feature selection was performed. A gradient boosting machine (GBM) was used to predict AKI. A tenfold-stratified area under the curve (AUC) served as the metric for internal validation. Calibration was performed via isotonic regression and evaluated using a calibration plot. End-stage renal disease (ESRD) was followed up for an average of 41.7 months.ResultsAKI develops in up to 10% of patients undergoing TKA, increasing the risk of progression to ESRD. The ESRD odds ratio of AKI patients (compared to non-AKI patients) was 9.8 (95% confidence interval 4.3–22.4). Six key predictors of postoperative AKI were selected: higher preoperative levels of creatinine in serum, the use of general anesthesia, male sex, a higher ASA class (> 3), use of a renin–angiotensin–aldosterone system inhibitor, and no use of tranexamic acid (all p < 0.001). The predictive performance of our model was good (area under the curve 0.78 [95% CI 0.74–0.81] in the developmental cohort and improved in the external validation cohort (0.89). Our model can be accessed at https://safetka.net.ConclusionsA web-based predictive model for AKI after TKA was developed using a machine-learning algorithm featuring six preoperative variables. The model is simple and has been validated to improve both short- and long-term prognoses of TKA patients. Postoperative AKI may lead to ESRD, which surgeons should strive to avoid.Level of evidenceDiagnostic level II.
    19 schema:genre article
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N600e40329d4f42f8a32cdad77097c74d
    22 Nf5ef7c658db74177a1f260c9270ab8fd
    23 sg:journal.1104512
    24 schema:keywords AKI
    25 AKI patients
    26 ASA class
    27 MethodThe study
    28 PurposeAcute kidney injury
    29 ResultsAKI
    30 Third Hospital
    31 acid
    32 aldosterone system inhibitors
    33 anesthesia
    34 area
    35 arthroplasty
    36 average
    37 calibration
    38 calibration plots
    39 class
    40 complications
    41 creatinine
    42 curves
    43 data
    44 deleterious complications
    45 disease
    46 end-stage renal disease
    47 factors
    48 feature selection
    49 general anesthesia
    50 gradient
    51 higher ASA class
    52 higher preoperative levels
    53 hospital
    54 inhibitors
    55 injury
    56 internal validation
    57 isotonic regression
    58 key predictors
    59 kidney injury
    60 knee arthroplasty
    61 levels
    62 machine
    63 male sex
    64 metrics
    65 model
    66 months
    67 patients
    68 performance
    69 plots
    70 postoperative AKI
    71 prediction model
    72 predictive performance
    73 predictors
    74 preoperative levels
    75 preoperative risk factors
    76 preoperative variables
    77 progression
    78 purpose
    79 ratio
    80 regression
    81 renal disease
    82 risk
    83 risk factors
    84 risk of progression
    85 selection
    86 serum
    87 sex
    88 stratified areas
    89 study
    90 system inhibitors
    91 teaching hospital
    92 tertiary teaching hospital
    93 total knee arthroplasty
    94 tranexamic acid
    95 use
    96 validation
    97 variables
    98 web-based prediction model
    99 schema:name A web-based machine-learning algorithm predicting postoperative acute kidney injury after total knee arthroplasty
    100 schema:pagination 545-554
    101 schema:productId N41b904e3418348ffa2e16442837ac18d
    102 N675116f7783c4d8c8b6e31418bab6689
    103 Nfbcbe43d23804ad1aed8af2eeaea39ba
    104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130548646
    105 https://doi.org/10.1007/s00167-020-06258-0
    106 schema:sdDatePublished 2022-09-02T16:04
    107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    108 schema:sdPublisher N187ac9b017fe4a429301675ffab4685a
    109 schema:url https://doi.org/10.1007/s00167-020-06258-0
    110 sgo:license sg:explorer/license/
    111 sgo:sdDataset articles
    112 rdf:type schema:ScholarlyArticle
    113 N037aad5640e5466eabda649a98a94531 rdf:first sg:person.011362034532.53
    114 rdf:rest N7bf783a0d7824da3a5e91b9290aed15b
    115 N0dcf0ba107fc499da9d93159cce53358 rdf:first sg:person.011234154441.74
    116 rdf:rest Ne435f03d96724c9584997ba08de2456c
    117 N0fc82e3477d04f54b9ed9ebe4a5911af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Internet
    119 rdf:type schema:DefinedTerm
    120 N101810d308814c70810c57f8d130260e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Machine Learning
    122 rdf:type schema:DefinedTerm
    123 N15f9b6f44b654b0289a2f34a50ebb26e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Risk Factors
    125 rdf:type schema:DefinedTerm
    126 N16bdb8f83c3848b5b61264ed683f399d rdf:first Nc8ae530e9f254353b5c1b0a0693c9a9c
    127 rdf:rest Nbb7c08fb0cb34eefb088f9a8e7f68614
    128 N187ac9b017fe4a429301675ffab4685a schema:name Springer Nature - SN SciGraph project
    129 rdf:type schema:Organization
    130 N232ca41557364686a744b7f1cec1bd19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Risk Assessment
    132 rdf:type schema:DefinedTerm
    133 N30b73155160e46e495ee6a1ebc5b952e rdf:first sg:person.016633305433.61
    134 rdf:rest N6e866ddf8b504ae0a88e1223e69527ac
    135 N3a897da77eb94671a88b73cfc3b3862c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Humans
    137 rdf:type schema:DefinedTerm
    138 N41b904e3418348ffa2e16442837ac18d schema:name dimensions_id
    139 schema:value pub.1130548646
    140 rdf:type schema:PropertyValue
    141 N4cde64ec6ad047b4b4edd0fbe820e2cf rdf:first sg:person.01174720470.15
    142 rdf:rest N037aad5640e5466eabda649a98a94531
    143 N600e40329d4f42f8a32cdad77097c74d schema:volumeNumber 30
    144 rdf:type schema:PublicationVolume
    145 N675116f7783c4d8c8b6e31418bab6689 schema:name doi
    146 schema:value 10.1007/s00167-020-06258-0
    147 rdf:type schema:PropertyValue
    148 N6b0de5ea6bc44f7b93aab594d6186294 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Algorithms
    150 rdf:type schema:DefinedTerm
    151 N6e866ddf8b504ae0a88e1223e69527ac rdf:first sg:person.016035725033.96
    152 rdf:rest Nd62bf590c25e457e85e8ba9e7cfa7cfe
    153 N7ae6944724314e2a9c5005ab97309644 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Acute Kidney Injury
    155 rdf:type schema:DefinedTerm
    156 N7bf783a0d7824da3a5e91b9290aed15b rdf:first sg:person.07567674712.54
    157 rdf:rest N0dcf0ba107fc499da9d93159cce53358
    158 Nbb7c08fb0cb34eefb088f9a8e7f68614 rdf:first sg:person.01322222131.16
    159 rdf:rest rdf:nil
    160 Nc8ae530e9f254353b5c1b0a0693c9a9c schema:affiliation grid-institutes:grid.412484.f
    161 schema:familyName Lee
    162 schema:givenName Hajeong
    163 rdf:type schema:Person
    164 Nca76bd6eb9d94279bb0b3987f9847d2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Arthroplasty, Replacement, Knee
    166 rdf:type schema:DefinedTerm
    167 Nd1455b931c484052b1f5dd0cb8470e3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Postoperative Complications
    169 rdf:type schema:DefinedTerm
    170 Nd62bf590c25e457e85e8ba9e7cfa7cfe rdf:first sg:person.0605067426.17
    171 rdf:rest N4cde64ec6ad047b4b4edd0fbe820e2cf
    172 Ne435f03d96724c9584997ba08de2456c rdf:first sg:person.01337220140.25
    173 rdf:rest N16bdb8f83c3848b5b61264ed683f399d
    174 Ne6c94e3f1ac24c19b7d4c25d029a3a90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Retrospective Studies
    176 rdf:type schema:DefinedTerm
    177 Nede8734f85da4d33a84ff0cd862f2214 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Male
    179 rdf:type schema:DefinedTerm
    180 Nf5ef7c658db74177a1f260c9270ab8fd schema:issueNumber 2
    181 rdf:type schema:PublicationIssue
    182 Nfbcbe43d23804ad1aed8af2eeaea39ba schema:name pubmed_id
    183 schema:value 32880677
    184 rdf:type schema:PropertyValue
    185 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    186 schema:name Medical and Health Sciences
    187 rdf:type schema:DefinedTerm
    188 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    189 schema:name Clinical Sciences
    190 rdf:type schema:DefinedTerm
    191 sg:journal.1104512 schema:issn 0942-2056
    192 1433-7347
    193 schema:name Knee Surgery, Sports Traumatology, Arthroscopy
    194 schema:publisher Springer Nature
    195 rdf:type schema:Periodical
    196 sg:person.011234154441.74 schema:affiliation grid-institutes:grid.412484.f
    197 schema:familyName Han
    198 schema:givenName Hyuk-Soo
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011234154441.74
    200 rdf:type schema:Person
    201 sg:person.011362034532.53 schema:affiliation grid-institutes:grid.414964.a
    202 schema:familyName Moon
    203 schema:givenName Young-Wan
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011362034532.53
    205 rdf:type schema:Person
    206 sg:person.01174720470.15 schema:affiliation grid-institutes:grid.412480.b
    207 schema:familyName Lee
    208 schema:givenName Yong Seuk
    209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174720470.15
    210 rdf:type schema:Person
    211 sg:person.01322222131.16 schema:affiliation grid-institutes:grid.412484.f
    212 schema:familyName Ro
    213 schema:givenName Du Hyun
    214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322222131.16
    215 rdf:type schema:Person
    216 sg:person.01337220140.25 schema:affiliation grid-institutes:grid.412484.f
    217 schema:familyName Lee
    218 schema:givenName Myung Chul
    219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337220140.25
    220 rdf:type schema:Person
    221 sg:person.016035725033.96 schema:affiliation grid-institutes:grid.31501.36
    222 schema:familyName Jo
    223 schema:givenName Changwung
    224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016035725033.96
    225 rdf:type schema:Person
    226 sg:person.016633305433.61 schema:affiliation grid-institutes:grid.31501.36
    227 schema:familyName Ko
    228 schema:givenName Sunho
    229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016633305433.61
    230 rdf:type schema:Person
    231 sg:person.0605067426.17 schema:affiliation grid-institutes:grid.412480.b
    232 schema:familyName Chang
    233 schema:givenName Chong Bum
    234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605067426.17
    235 rdf:type schema:Person
    236 sg:person.07567674712.54 schema:affiliation grid-institutes:grid.414964.a
    237 schema:familyName Youm
    238 schema:givenName Jae woo
    239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07567674712.54
    240 rdf:type schema:Person
    241 sg:pub.10.1007/s00167-019-05602-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117620541
    242 https://doi.org/10.1007/s00167-019-05602-3
    243 rdf:type schema:CreativeWork
    244 grid-institutes:grid.31501.36 schema:alternateName Seoul National University College of Medicine, Seoul, South Korea
    245 schema:name Seoul National University College of Medicine, Seoul, South Korea
    246 rdf:type schema:Organization
    247 grid-institutes:grid.412480.b schema:alternateName Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul, South Korea
    248 schema:name Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul, South Korea
    249 rdf:type schema:Organization
    250 grid-institutes:grid.412484.f schema:alternateName Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
    251 Department of Orthopedic Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea
    252 schema:name Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
    253 Department of Orthopedic Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea
    254 rdf:type schema:Organization
    255 grid-institutes:grid.414964.a schema:alternateName Department of Orthopedic Surgery, Samsung Medical Center, Seoul, South Korea
    256 schema:name Department of Orthopedic Surgery, Samsung Medical Center, Seoul, South Korea
    257 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...