Transfusion after total knee arthroplasty can be predicted using the machine learning algorithm View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-06-28

AUTHORS

Changwung Jo, Sunho Ko, Woo Cheol Shin, Hyuk-Soo Han, Myung Chul Lee, Taehoon Ko, Du Hyun Ro

ABSTRACT

PurposeA blood transfusion after total knee arthroplasty (TKA) is associated with an increase in complication and infection rates. However, no studies have been conducted to predict transfusion after TKA using a machine learning algorithm. The purpose of this study was to identify informative preoperative variables to create a machine learning model, and to provide a web-based transfusion risk-assessment system for clinical use.MethodsThis study retrospectively reviewed 1686 patients who underwent TKA at our institution. Data for 43 preoperative variables, including medication history, laboratory values, and demographic characteristics, were collected. Variable selection was conducted using the recursive feature elimination algorithm. The transfusion group was defined as patients with haemoglobin (Hb) < 7 g/dL after TKA. A predictive model was developed using the gradient boosting machine, and the performance of the model was assessed by the area under the receiver operating characteristic curve (AUC). Data sets from an independent institution were tested with the model for external validation.ResultsOf the 1686 patients who underwent TKA, 108 (6.4%) were categorized into the transfusion group. Six preoperative variables were selected, including preoperative Hb, platelet count, type of surgery, tranexamic acid, age, and body weight. The predictive model demonstrated good predictive performance using the six variables [AUC 0.842; 95% confidence interval (CI) 0.820–0.856]. Performance was also good according to the external validation using 400 data from an independent institution (AUC 0.880; 95% CI 0.844–0.910). This web-based blood transfusion risk-assessment system can be accessed at http://safetka.net.ConclusionsA web-based predictive model for transfusion after TKA using a machine learning algorithm was developed using six preoperative variables. The model is simple, has been validated, showed good performance, and can be used before TKA to predict the risk of transfusion and guide appropriate precautions for high-risk patients.Level of evidenceDiagnostic level II. More... »

PAGES

1757-1764

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00167-019-05602-3

DOI

http://dx.doi.org/10.1007/s00167-019-05602-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1117620541

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31254027


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1106", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Human Movement and Sports Science", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Area Under Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arthroplasty, Replacement, Knee", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Transfusion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hemoglobins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Machine Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Platelet Count", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tranexamic Acid", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jo", 
        "givenName": "Changwung", 
        "id": "sg:person.016035725033.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016035725033.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ko", 
        "givenName": "Sunho", 
        "id": "sg:person.016633305433.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016633305433.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Orthopaedic Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Orthopaedic Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "Woo Cheol", 
        "id": "sg:person.01262450614.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262450614.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Orthopaedic Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Orthopaedic Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Hyuk-Soo", 
        "id": "sg:person.011234154441.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011234154441.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Orthopaedic Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Orthopaedic Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Myung Chul", 
        "id": "sg:person.01337220140.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337220140.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Office of Hospital Information, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Office of Hospital Information, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ko", 
        "givenName": "Taehoon", 
        "id": "sg:person.011517676534.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517676534.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Orthopaedic Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Orthopaedic Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ro", 
        "givenName": "Du Hyun", 
        "id": "sg:person.01322222131.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322222131.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00167-018-5333-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110580061", 
          "https://doi.org/10.1007/s00167-018-5333-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.5792/ksrr.2016.28.3.201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007037172", 
          "https://doi.org/10.5792/ksrr.2016.28.3.201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00402-015-2168-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004044605", 
          "https://doi.org/10.1007/s00402-015-2168-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-06-28", 
    "datePublishedReg": "2019-06-28", 
    "description": "PurposeA blood transfusion after total knee arthroplasty (TKA) is associated with an increase in complication and infection rates. However, no studies have been conducted to predict transfusion after TKA using a machine learning algorithm. The purpose of this study was to identify informative preoperative variables to create a machine learning model, and to provide a web-based transfusion risk-assessment system for clinical use.MethodsThis study retrospectively reviewed 1686 patients who underwent TKA at our institution. Data for 43 preoperative variables, including medication history, laboratory values, and demographic characteristics, were collected. Variable selection was conducted using the recursive feature elimination algorithm. The transfusion group was defined as patients with haemoglobin (Hb)\u2009<\u20097\u00a0g/dL after TKA. A predictive model was developed using the gradient boosting machine, and the performance of the model was assessed by the area under the receiver operating characteristic curve (AUC). Data sets from an independent institution were tested with the model for external validation.ResultsOf the 1686 patients who underwent TKA, 108 (6.4%) were categorized into the transfusion group. Six preoperative variables were selected, including preoperative Hb, platelet count, type of surgery, tranexamic acid, age, and body weight. The predictive model demonstrated good predictive performance using the six variables [AUC 0.842; 95% confidence interval (CI) 0.820\u20130.856]. Performance was also good according to the external validation using 400 data from an independent institution (AUC 0.880; 95% CI 0.844\u20130.910). This web-based blood transfusion risk-assessment system can be accessed at http://safetka.net.ConclusionsA web-based predictive model for transfusion after TKA using a machine learning algorithm was developed using six preoperative variables. The model is simple, has been validated, showed good performance, and can be used before TKA to predict the risk of transfusion and guide appropriate precautions for high-risk patients.Level of evidenceDiagnostic level II.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00167-019-05602-3", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104512", 
        "issn": [
          "0942-2056", 
          "1433-7347"
        ], 
        "name": "Knee Surgery, Sports Traumatology, Arthroscopy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "keywords": [
      "total knee arthroplasty", 
      "preoperative variables", 
      "transfusion group", 
      "knee arthroplasty", 
      "web-based predictive model", 
      "risk of transfusion", 
      "high-risk patients", 
      "type of surgery", 
      "external validation", 
      "preoperative Hb", 
      "blood transfusion", 
      "medication history", 
      "tranexamic acid", 
      "platelet count", 
      "laboratory values", 
      "MethodsThis study", 
      "transfusion", 
      "body weight", 
      "infection rate", 
      "patients", 
      "level II", 
      "clinical use", 
      "demographic characteristics", 
      "appropriate precautions", 
      "characteristic curve", 
      "arthroplasty", 
      "risk assessment system", 
      "good predictive performance", 
      "predictive model", 
      "complications", 
      "ResultsOf", 
      "surgery", 
      "group", 
      "dl", 
      "hemoglobin", 
      "study", 
      "age", 
      "risk", 
      "predictive performance", 
      "independent institutions", 
      "count", 
      "recursive feature elimination algorithm", 
      "Hb", 
      "precautions", 
      "variables", 
      "institutions", 
      "levels", 
      "data", 
      "history", 
      "weight", 
      "rate", 
      "increase", 
      "validation", 
      "acid", 
      "use", 
      "purpose", 
      "model", 
      "receiver", 
      "types", 
      "curves", 
      "area", 
      "characteristics", 
      "values", 
      "system", 
      "selection", 
      "elimination algorithm", 
      "machine", 
      "algorithm", 
      "data sets", 
      "better performance", 
      "variable selection", 
      "performance", 
      "gradient", 
      "set"
    ], 
    "name": "Transfusion after total knee arthroplasty can be predicted using the machine learning algorithm", 
    "pagination": "1757-1764", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1117620541"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00167-019-05602-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31254027"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00167-019-05602-3", 
      "https://app.dimensions.ai/details/publication/pub.1117620541"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_803.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00167-019-05602-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00167-019-05602-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00167-019-05602-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00167-019-05602-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00167-019-05602-3'


 

This table displays all metadata directly associated to this object as RDF triples.

266 TRIPLES      21 PREDICATES      120 URIs      108 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00167-019-05602-3 schema:about N1bd2e132fc2b47608f649ef36791ad8e
2 N1ca2664b47754b3ead0811a6dcab524c
3 N23e8091af7044d22996b5469b04748fe
4 N3119ee2c6a424eceab83709c7ffb8373
5 N39a9c081ec5746509334277bffd2f8b2
6 N3defe6ff976e48b3a4cd12fa062b3acb
7 N581a4b7cd9b94d9ca721fbe4706fc0d8
8 N59aef4ff8b1044eaa4a1c1b8a004462b
9 N67856ef1da92455f97c3ad617faac213
10 N828a8749dc4e4955988c322ab64097ec
11 N944c6efc5fc54ea0b021a466990f6cc8
12 N969712b1fd924a7483d463a88abcf831
13 Nb77ac9962257472da5ad32e69e2797f7
14 Ne53f94c1329040d8b81ac3e9643d297a
15 Ne97009f1df854b3e8f3004dffd39505d
16 Nefd4ae0307bb491f959f0f7502a0a3c4
17 Nfca131dc415a4df6bb396804adcd35b1
18 anzsrc-for:11
19 anzsrc-for:1103
20 anzsrc-for:1106
21 schema:author Nc852d10ccce4431b9d18d02797441f71
22 schema:citation sg:pub.10.1007/s00167-018-5333-4
23 sg:pub.10.1007/s00402-015-2168-z
24 sg:pub.10.5792/ksrr.2016.28.3.201
25 schema:datePublished 2019-06-28
26 schema:datePublishedReg 2019-06-28
27 schema:description PurposeA blood transfusion after total knee arthroplasty (TKA) is associated with an increase in complication and infection rates. However, no studies have been conducted to predict transfusion after TKA using a machine learning algorithm. The purpose of this study was to identify informative preoperative variables to create a machine learning model, and to provide a web-based transfusion risk-assessment system for clinical use.MethodsThis study retrospectively reviewed 1686 patients who underwent TKA at our institution. Data for 43 preoperative variables, including medication history, laboratory values, and demographic characteristics, were collected. Variable selection was conducted using the recursive feature elimination algorithm. The transfusion group was defined as patients with haemoglobin (Hb) < 7 g/dL after TKA. A predictive model was developed using the gradient boosting machine, and the performance of the model was assessed by the area under the receiver operating characteristic curve (AUC). Data sets from an independent institution were tested with the model for external validation.ResultsOf the 1686 patients who underwent TKA, 108 (6.4%) were categorized into the transfusion group. Six preoperative variables were selected, including preoperative Hb, platelet count, type of surgery, tranexamic acid, age, and body weight. The predictive model demonstrated good predictive performance using the six variables [AUC 0.842; 95% confidence interval (CI) 0.820–0.856]. Performance was also good according to the external validation using 400 data from an independent institution (AUC 0.880; 95% CI 0.844–0.910). This web-based blood transfusion risk-assessment system can be accessed at http://safetka.net.ConclusionsA web-based predictive model for transfusion after TKA using a machine learning algorithm was developed using six preoperative variables. The model is simple, has been validated, showed good performance, and can be used before TKA to predict the risk of transfusion and guide appropriate precautions for high-risk patients.Level of evidenceDiagnostic level II.
28 schema:genre article
29 schema:isAccessibleForFree false
30 schema:isPartOf N846a50ad4f6a426da2689636e8f2df11
31 Nd5682e4c8f3943d688e7d54b699eb39d
32 sg:journal.1104512
33 schema:keywords Hb
34 MethodsThis study
35 ResultsOf
36 acid
37 age
38 algorithm
39 appropriate precautions
40 area
41 arthroplasty
42 better performance
43 blood transfusion
44 body weight
45 characteristic curve
46 characteristics
47 clinical use
48 complications
49 count
50 curves
51 data
52 data sets
53 demographic characteristics
54 dl
55 elimination algorithm
56 external validation
57 good predictive performance
58 gradient
59 group
60 hemoglobin
61 high-risk patients
62 history
63 increase
64 independent institutions
65 infection rate
66 institutions
67 knee arthroplasty
68 laboratory values
69 level II
70 levels
71 machine
72 medication history
73 model
74 patients
75 performance
76 platelet count
77 precautions
78 predictive model
79 predictive performance
80 preoperative Hb
81 preoperative variables
82 purpose
83 rate
84 receiver
85 recursive feature elimination algorithm
86 risk
87 risk assessment system
88 risk of transfusion
89 selection
90 set
91 study
92 surgery
93 system
94 total knee arthroplasty
95 tranexamic acid
96 transfusion
97 transfusion group
98 type of surgery
99 types
100 use
101 validation
102 values
103 variable selection
104 variables
105 web-based predictive model
106 weight
107 schema:name Transfusion after total knee arthroplasty can be predicted using the machine learning algorithm
108 schema:pagination 1757-1764
109 schema:productId N5211744359814cfcbf5cbe57b53f4d5e
110 N8f012fa2d5f44d8fa948e591fcfd3bbf
111 Nc7b159c5a10545639c6deb0d3dbc63e1
112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117620541
113 https://doi.org/10.1007/s00167-019-05602-3
114 schema:sdDatePublished 2022-09-02T16:03
115 schema:sdLicense https://scigraph.springernature.com/explorer/license/
116 schema:sdPublisher N22f313f05be84c48b89bf8fa753a37de
117 schema:url https://doi.org/10.1007/s00167-019-05602-3
118 sgo:license sg:explorer/license/
119 sgo:sdDataset articles
120 rdf:type schema:ScholarlyArticle
121 N10fb5a7347de482287a721c66a252e86 rdf:first sg:person.01262450614.57
122 rdf:rest Nd84ea034c2b14c388637259a76d8d2ce
123 N17a04217467f446bb1a590a6d531c948 rdf:first sg:person.01322222131.16
124 rdf:rest rdf:nil
125 N1bd2e132fc2b47608f649ef36791ad8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Algorithms
127 rdf:type schema:DefinedTerm
128 N1ca2664b47754b3ead0811a6dcab524c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Machine Learning
130 rdf:type schema:DefinedTerm
131 N22f313f05be84c48b89bf8fa753a37de schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 N23e8091af7044d22996b5469b04748fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Platelet Count
135 rdf:type schema:DefinedTerm
136 N3119ee2c6a424eceab83709c7ffb8373 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Area Under Curve
138 rdf:type schema:DefinedTerm
139 N39a9c081ec5746509334277bffd2f8b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Blood Transfusion
141 rdf:type schema:DefinedTerm
142 N3d1f1f2629644808b24ee064786dcc67 rdf:first sg:person.011517676534.01
143 rdf:rest N17a04217467f446bb1a590a6d531c948
144 N3defe6ff976e48b3a4cd12fa062b3acb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Humans
146 rdf:type schema:DefinedTerm
147 N5211744359814cfcbf5cbe57b53f4d5e schema:name dimensions_id
148 schema:value pub.1117620541
149 rdf:type schema:PropertyValue
150 N581a4b7cd9b94d9ca721fbe4706fc0d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Tranexamic Acid
152 rdf:type schema:DefinedTerm
153 N59aef4ff8b1044eaa4a1c1b8a004462b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Aged
155 rdf:type schema:DefinedTerm
156 N67856ef1da92455f97c3ad617faac213 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Arthroplasty, Replacement, Knee
158 rdf:type schema:DefinedTerm
159 N828a8749dc4e4955988c322ab64097ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Male
161 rdf:type schema:DefinedTerm
162 N846a50ad4f6a426da2689636e8f2df11 schema:volumeNumber 28
163 rdf:type schema:PublicationVolume
164 N8f012fa2d5f44d8fa948e591fcfd3bbf schema:name doi
165 schema:value 10.1007/s00167-019-05602-3
166 rdf:type schema:PropertyValue
167 N944c6efc5fc54ea0b021a466990f6cc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Hemoglobins
169 rdf:type schema:DefinedTerm
170 N969712b1fd924a7483d463a88abcf831 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Female
172 rdf:type schema:DefinedTerm
173 Na7fe9b03f3f14da5ba953c1f2506af80 rdf:first sg:person.01337220140.25
174 rdf:rest N3d1f1f2629644808b24ee064786dcc67
175 Nb2c7a966561246639b0f2c083371d2e2 rdf:first sg:person.016633305433.61
176 rdf:rest N10fb5a7347de482287a721c66a252e86
177 Nb77ac9962257472da5ad32e69e2797f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Adult
179 rdf:type schema:DefinedTerm
180 Nc7b159c5a10545639c6deb0d3dbc63e1 schema:name pubmed_id
181 schema:value 31254027
182 rdf:type schema:PropertyValue
183 Nc852d10ccce4431b9d18d02797441f71 rdf:first sg:person.016035725033.96
184 rdf:rest Nb2c7a966561246639b0f2c083371d2e2
185 Nd5682e4c8f3943d688e7d54b699eb39d schema:issueNumber 6
186 rdf:type schema:PublicationIssue
187 Nd84ea034c2b14c388637259a76d8d2ce rdf:first sg:person.011234154441.74
188 rdf:rest Na7fe9b03f3f14da5ba953c1f2506af80
189 Ne53f94c1329040d8b81ac3e9643d297a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Middle Aged
191 rdf:type schema:DefinedTerm
192 Ne97009f1df854b3e8f3004dffd39505d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name ROC Curve
194 rdf:type schema:DefinedTerm
195 Nefd4ae0307bb491f959f0f7502a0a3c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Risk Assessment
197 rdf:type schema:DefinedTerm
198 Nfca131dc415a4df6bb396804adcd35b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Retrospective Studies
200 rdf:type schema:DefinedTerm
201 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
202 schema:name Medical and Health Sciences
203 rdf:type schema:DefinedTerm
204 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
205 schema:name Clinical Sciences
206 rdf:type schema:DefinedTerm
207 anzsrc-for:1106 schema:inDefinedTermSet anzsrc-for:
208 schema:name Human Movement and Sports Science
209 rdf:type schema:DefinedTerm
210 sg:journal.1104512 schema:issn 0942-2056
211 1433-7347
212 schema:name Knee Surgery, Sports Traumatology, Arthroscopy
213 schema:publisher Springer Nature
214 rdf:type schema:Periodical
215 sg:person.011234154441.74 schema:affiliation grid-institutes:grid.412484.f
216 schema:familyName Han
217 schema:givenName Hyuk-Soo
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011234154441.74
219 rdf:type schema:Person
220 sg:person.011517676534.01 schema:affiliation grid-institutes:grid.412484.f
221 schema:familyName Ko
222 schema:givenName Taehoon
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517676534.01
224 rdf:type schema:Person
225 sg:person.01262450614.57 schema:affiliation grid-institutes:grid.412484.f
226 schema:familyName Shin
227 schema:givenName Woo Cheol
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262450614.57
229 rdf:type schema:Person
230 sg:person.01322222131.16 schema:affiliation grid-institutes:grid.412484.f
231 schema:familyName Ro
232 schema:givenName Du Hyun
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322222131.16
234 rdf:type schema:Person
235 sg:person.01337220140.25 schema:affiliation grid-institutes:grid.412484.f
236 schema:familyName Lee
237 schema:givenName Myung Chul
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337220140.25
239 rdf:type schema:Person
240 sg:person.016035725033.96 schema:affiliation grid-institutes:grid.31501.36
241 schema:familyName Jo
242 schema:givenName Changwung
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016035725033.96
244 rdf:type schema:Person
245 sg:person.016633305433.61 schema:affiliation grid-institutes:grid.31501.36
246 schema:familyName Ko
247 schema:givenName Sunho
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016633305433.61
249 rdf:type schema:Person
250 sg:pub.10.1007/s00167-018-5333-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110580061
251 https://doi.org/10.1007/s00167-018-5333-4
252 rdf:type schema:CreativeWork
253 sg:pub.10.1007/s00402-015-2168-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1004044605
254 https://doi.org/10.1007/s00402-015-2168-z
255 rdf:type schema:CreativeWork
256 sg:pub.10.5792/ksrr.2016.28.3.201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007037172
257 https://doi.org/10.5792/ksrr.2016.28.3.201
258 rdf:type schema:CreativeWork
259 grid-institutes:grid.31501.36 schema:alternateName Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
260 schema:name Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
261 rdf:type schema:Organization
262 grid-institutes:grid.412484.f schema:alternateName Department of Orthopaedic Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
263 Office of Hospital Information, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
264 schema:name Department of Orthopaedic Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
265 Office of Hospital Information, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
266 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...