High-load preconditioning of soft tissue grafts: an in vitro biomechanical bovine tendon model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-11-08

AUTHORS

Jeffrey R. Jaglowski, Brady T. Williams, Travis Lee Turnbull, Robert F. LaPrade, Coen A. Wijdicks

ABSTRACT

PurposeNo consensus exists regarding the optimal preconditioning protocol that will minimize postoperative elongation while creating a graft that is biomechanically equivalent to the native anterior cruciate ligament (ACL). It was hypothesized that a preconditioning protocol of specific mode and magnitude would create a graft with equivalent stiffness to the native ACL.MethodsThirty-six bovine extensor tendon grafts were randomly allocated among six preconditioning groups (n = 6 per group) including three cyclic (10 cycles at 0.5 Hz between 10–80, 100–300, and 300–600 N) and three static loading protocols (20 s at 80, 300, and 600 N). Grafts were then cyclically loaded between 50 and 250 N at 0.5 Hz for 500 cycles to simulate an early rehabilitation protocol.ResultsCyclic 300–600 N and static 600 N loading protocols both demonstrated significantly less elongation during simulated rehabilitation when compared to lower, current clinical standard preconditioning levels of 10–80 N (−62 % Δ) and 80 N (−69 % Δ). The same high-load preconditioning protocols demonstrated statistical equivalence in stiffness when compared to the previously reported stiffness of the native ACL.ConclusionsIn this experimental model, increased force applied to soft tissue grafts during preconditioning significantly decreased the subsequent elongation experienced during simulated early rehabilitation. A static load of 600 N removed the most graft elongation during preconditioning, had the least amount of cyclic displacement during simulated early rehabilitation, and was statistically equivalent to the native ACL stiffness. Implementation of high-load preconditioning of soft tissue grafts may help improve outcomes following ACL reconstruction by reducing residual knee laxity resulting from postoperative graft elongation and the intrinsic viscoelastic properties of the graft tissue while imparting biomechanical characteristics (e.g. stiffness) equivalent to the native ACL. More... »

PAGES

895-902

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00167-014-3410-x

DOI

http://dx.doi.org/10.1007/s00167-014-3410-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012987009

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25380971


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anterior Cruciate Ligament", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomechanical Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cattle", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heterografts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Animal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tendons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transplants", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Weight-Bearing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The Steadman Clinic, 181 West Meadow Drive, Suite 400, 81657, Vail, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.419648.6", 
          "name": [
            "Department of BioMedical Engineering, Steadman Philippon Research Institute, 181 West Meadow Drive, Suite 1000, 81657, Vail, CO, USA", 
            "The Steadman Clinic, 181 West Meadow Drive, Suite 400, 81657, Vail, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jaglowski", 
        "givenName": "Jeffrey R.", 
        "id": "sg:person.01132551556.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132551556.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of BioMedical Engineering, Steadman Philippon Research Institute, 181 West Meadow Drive, Suite 1000, 81657, Vail, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.419649.7", 
          "name": [
            "Department of BioMedical Engineering, Steadman Philippon Research Institute, 181 West Meadow Drive, Suite 1000, 81657, Vail, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Williams", 
        "givenName": "Brady T.", 
        "id": "sg:person.01054504520.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054504520.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of BioMedical Engineering, Steadman Philippon Research Institute, 181 West Meadow Drive, Suite 1000, 81657, Vail, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.419649.7", 
          "name": [
            "Department of BioMedical Engineering, Steadman Philippon Research Institute, 181 West Meadow Drive, Suite 1000, 81657, Vail, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turnbull", 
        "givenName": "Travis Lee", 
        "id": "sg:person.01036311131.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036311131.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Steadman Clinic, 181 West Meadow Drive, Suite 400, 81657, Vail, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.419648.6", 
          "name": [
            "Department of BioMedical Engineering, Steadman Philippon Research Institute, 181 West Meadow Drive, Suite 1000, 81657, Vail, CO, USA", 
            "The Steadman Clinic, 181 West Meadow Drive, Suite 400, 81657, Vail, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "LaPrade", 
        "givenName": "Robert F.", 
        "id": "sg:person.01224377675.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224377675.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of BioMedical Engineering, Steadman Philippon Research Institute, 181 West Meadow Drive, Suite 1000, 81657, Vail, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.419649.7", 
          "name": [
            "Department of BioMedical Engineering, Steadman Philippon Research Institute, 181 West Meadow Drive, Suite 1000, 81657, Vail, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wijdicks", 
        "givenName": "Coen A.", 
        "id": "sg:person.01253763100.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253763100.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s001670100230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029487835", 
          "https://doi.org/10.1007/s001670100230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001670050224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016791165", 
          "https://doi.org/10.1007/s001670050224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00402-002-0409-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050864957", 
          "https://doi.org/10.1007/s00402-002-0409-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00167-008-0654-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001812014", 
          "https://doi.org/10.1007/s00167-008-0654-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00167-009-0925-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032686825", 
          "https://doi.org/10.1007/s00167-009-0925-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00167-008-0560-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020435105", 
          "https://doi.org/10.1007/s00167-008-0560-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00167-011-1833-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038279977", 
          "https://doi.org/10.1007/s00167-011-1833-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-11-08", 
    "datePublishedReg": "2014-11-08", 
    "description": "PurposeNo consensus exists regarding the optimal preconditioning protocol that will minimize postoperative elongation while creating a graft that is biomechanically equivalent to the native anterior cruciate ligament (ACL). It was hypothesized that a preconditioning protocol of specific mode and magnitude would create a graft with equivalent stiffness to the native ACL.MethodsThirty-six bovine extensor tendon grafts were randomly allocated among six preconditioning groups (n\u00a0=\u00a06 per group) including three cyclic (10 cycles at 0.5\u00a0Hz between 10\u201380, 100\u2013300, and 300\u2013600\u00a0N) and three static loading protocols (20\u00a0s at 80, 300, and 600\u00a0N). Grafts were then cyclically loaded between 50 and 250\u00a0N at 0.5\u00a0Hz for 500 cycles to simulate an early rehabilitation protocol.ResultsCyclic 300\u2013600\u00a0N and static 600\u00a0N loading protocols both demonstrated significantly less elongation during simulated rehabilitation when compared to lower, current clinical standard preconditioning levels of 10\u201380\u00a0N (\u221262\u00a0% \u0394) and 80\u00a0N (\u221269\u00a0% \u0394). The same high-load\u00a0preconditioning protocols demonstrated statistical equivalence in stiffness when compared to the previously reported stiffness of the native ACL.ConclusionsIn this experimental model, increased force applied to soft tissue grafts during preconditioning significantly decreased the subsequent elongation experienced during simulated early rehabilitation. A static load of 600\u00a0N removed the most graft elongation during preconditioning, had the least amount of cyclic displacement during simulated early rehabilitation, and was statistically equivalent to the native ACL stiffness. Implementation of high-load preconditioning of soft tissue grafts may help improve outcomes following ACL reconstruction by reducing residual knee laxity resulting from postoperative graft elongation and the intrinsic viscoelastic properties of the graft tissue while imparting biomechanical characteristics (e.g. stiffness) equivalent to the native ACL.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00167-014-3410-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104512", 
        "issn": [
          "0942-2056", 
          "1433-7347"
        ], 
        "name": "Knee Surgery, Sports Traumatology, Arthroscopy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "keywords": [
      "native anterior cruciate ligament", 
      "anterior cruciate ligament", 
      "soft tissue grafts", 
      "tissue graft", 
      "early rehabilitation", 
      "graft elongation", 
      "residual knee laxity", 
      "early rehabilitation protocol", 
      "ACL stiffness", 
      "tendon graft", 
      "ACL reconstruction", 
      "loading protocol", 
      "knee laxity", 
      "rehabilitation protocol", 
      "cruciate ligament", 
      "preconditioning protocol", 
      "graft tissue", 
      "simulated rehabilitation", 
      "graft", 
      "experimental model", 
      "postoperative elongation", 
      "biomechanical characteristics", 
      "rehabilitation", 
      "preconditioning", 
      "tendon model", 
      "protocol", 
      "laxity", 
      "ligament", 
      "outcomes", 
      "ConclusionsIn", 
      "less elongation", 
      "statistical equivalence", 
      "tissue", 
      "group", 
      "static loading protocol", 
      "levels", 
      "least amount", 
      "consensus", 
      "stiffness", 
      "cyclic displacement", 
      "subsequent elongation", 
      "reconstruction", 
      "specific mode", 
      "intrinsic viscoelastic properties", 
      "Hz", 
      "equivalent stiffness", 
      "static load", 
      "model", 
      "characteristics", 
      "viscoelastic properties", 
      "cycle", 
      "cyclic", 
      "amount", 
      "elongation", 
      "magnitude", 
      "load", 
      "implementation", 
      "displacement", 
      "force", 
      "properties", 
      "mode", 
      "equivalence"
    ], 
    "name": "High-load preconditioning of soft tissue grafts: an in vitro biomechanical bovine tendon model", 
    "pagination": "895-902", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012987009"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00167-014-3410-x"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25380971"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00167-014-3410-x", 
      "https://app.dimensions.ai/details/publication/pub.1012987009"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_643.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00167-014-3410-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00167-014-3410-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00167-014-3410-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00167-014-3410-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00167-014-3410-x'


 

This table displays all metadata directly associated to this object as RDF triples.

224 TRIPLES      22 PREDICATES      105 URIs      90 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00167-014-3410-x schema:about N180a505d47b144d98ec66a3445ed88ec
2 N92eb0511683947a6858e0d8fd471f52c
3 Nb4f16363ecb7453192a1c1b83ffcf87d
4 Nb525bea0d2e041f394ff7a36978796c4
5 Nbc2e274722714d909930c18aa8137119
6 Nc47743bd4e9c4185af0c54930bd189ea
7 Nde32117738814aada863975468e41365
8 Ne711a4f43f1244e984fb6738d2b74f89
9 Nea84673165de404bb32fef659c01e3ba
10 Nf36b7b2dd3834dd8b09dd1d0707a10c8
11 anzsrc-for:11
12 anzsrc-for:1103
13 schema:author Nba874686d6664b2090f3ccb931adbbee
14 schema:citation sg:pub.10.1007/s00167-008-0560-8
15 sg:pub.10.1007/s00167-008-0654-3
16 sg:pub.10.1007/s00167-009-0925-7
17 sg:pub.10.1007/s00167-011-1833-1
18 sg:pub.10.1007/s001670050224
19 sg:pub.10.1007/s001670100230
20 sg:pub.10.1007/s00402-002-0409-4
21 schema:datePublished 2014-11-08
22 schema:datePublishedReg 2014-11-08
23 schema:description PurposeNo consensus exists regarding the optimal preconditioning protocol that will minimize postoperative elongation while creating a graft that is biomechanically equivalent to the native anterior cruciate ligament (ACL). It was hypothesized that a preconditioning protocol of specific mode and magnitude would create a graft with equivalent stiffness to the native ACL.MethodsThirty-six bovine extensor tendon grafts were randomly allocated among six preconditioning groups (n = 6 per group) including three cyclic (10 cycles at 0.5 Hz between 10–80, 100–300, and 300–600 N) and three static loading protocols (20 s at 80, 300, and 600 N). Grafts were then cyclically loaded between 50 and 250 N at 0.5 Hz for 500 cycles to simulate an early rehabilitation protocol.ResultsCyclic 300–600 N and static 600 N loading protocols both demonstrated significantly less elongation during simulated rehabilitation when compared to lower, current clinical standard preconditioning levels of 10–80 N (−62 % Δ) and 80 N (−69 % Δ). The same high-load preconditioning protocols demonstrated statistical equivalence in stiffness when compared to the previously reported stiffness of the native ACL.ConclusionsIn this experimental model, increased force applied to soft tissue grafts during preconditioning significantly decreased the subsequent elongation experienced during simulated early rehabilitation. A static load of 600 N removed the most graft elongation during preconditioning, had the least amount of cyclic displacement during simulated early rehabilitation, and was statistically equivalent to the native ACL stiffness. Implementation of high-load preconditioning of soft tissue grafts may help improve outcomes following ACL reconstruction by reducing residual knee laxity resulting from postoperative graft elongation and the intrinsic viscoelastic properties of the graft tissue while imparting biomechanical characteristics (e.g. stiffness) equivalent to the native ACL.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf Nbd0f626b04bc4e47afebeef04ef49a41
28 Nd45fae243b094b0e8baf825ad9fa3095
29 sg:journal.1104512
30 schema:keywords ACL reconstruction
31 ACL stiffness
32 ConclusionsIn
33 Hz
34 amount
35 anterior cruciate ligament
36 biomechanical characteristics
37 characteristics
38 consensus
39 cruciate ligament
40 cycle
41 cyclic
42 cyclic displacement
43 displacement
44 early rehabilitation
45 early rehabilitation protocol
46 elongation
47 equivalence
48 equivalent stiffness
49 experimental model
50 force
51 graft
52 graft elongation
53 graft tissue
54 group
55 implementation
56 intrinsic viscoelastic properties
57 knee laxity
58 laxity
59 least amount
60 less elongation
61 levels
62 ligament
63 load
64 loading protocol
65 magnitude
66 mode
67 model
68 native anterior cruciate ligament
69 outcomes
70 postoperative elongation
71 preconditioning
72 preconditioning protocol
73 properties
74 protocol
75 reconstruction
76 rehabilitation
77 rehabilitation protocol
78 residual knee laxity
79 simulated rehabilitation
80 soft tissue grafts
81 specific mode
82 static load
83 static loading protocol
84 statistical equivalence
85 stiffness
86 subsequent elongation
87 tendon graft
88 tendon model
89 tissue
90 tissue graft
91 viscoelastic properties
92 schema:name High-load preconditioning of soft tissue grafts: an in vitro biomechanical bovine tendon model
93 schema:pagination 895-902
94 schema:productId N3434c410f39048d8a4c09615792de911
95 N80b1743b2ec94c43bac8130a36ea117f
96 Nd7fb76ff8a334e41bd18a7358a59c667
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012987009
98 https://doi.org/10.1007/s00167-014-3410-x
99 schema:sdDatePublished 2022-05-10T10:12
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher N15c91d815dc54eae86c975f969a42367
102 schema:url https://doi.org/10.1007/s00167-014-3410-x
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N15c91d815dc54eae86c975f969a42367 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 N180a505d47b144d98ec66a3445ed88ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Anterior Cruciate Ligament
110 rdf:type schema:DefinedTerm
111 N22fd0e5410664a48ab8aa3fe83f524df rdf:first sg:person.01224377675.49
112 rdf:rest N25a7c37427284d44b331304ea85f00cd
113 N25a7c37427284d44b331304ea85f00cd rdf:first sg:person.01253763100.82
114 rdf:rest rdf:nil
115 N3434c410f39048d8a4c09615792de911 schema:name doi
116 schema:value 10.1007/s00167-014-3410-x
117 rdf:type schema:PropertyValue
118 N72d2ae0097aa41d2ab145772fa876bcf rdf:first sg:person.01036311131.78
119 rdf:rest N22fd0e5410664a48ab8aa3fe83f524df
120 N80b1743b2ec94c43bac8130a36ea117f schema:name dimensions_id
121 schema:value pub.1012987009
122 rdf:type schema:PropertyValue
123 N92eb0511683947a6858e0d8fd471f52c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Elasticity
125 rdf:type schema:DefinedTerm
126 Nb4f16363ecb7453192a1c1b83ffcf87d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Animals
128 rdf:type schema:DefinedTerm
129 Nb525bea0d2e041f394ff7a36978796c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Cattle
131 rdf:type schema:DefinedTerm
132 Nba874686d6664b2090f3ccb931adbbee rdf:first sg:person.01132551556.81
133 rdf:rest Nf5e6e7cbe1824258b3c8c0d3cbda623c
134 Nbc2e274722714d909930c18aa8137119 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Tendons
136 rdf:type schema:DefinedTerm
137 Nbd0f626b04bc4e47afebeef04ef49a41 schema:issueNumber 3
138 rdf:type schema:PublicationIssue
139 Nc47743bd4e9c4185af0c54930bd189ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Biomechanical Phenomena
141 rdf:type schema:DefinedTerm
142 Nd45fae243b094b0e8baf825ad9fa3095 schema:volumeNumber 24
143 rdf:type schema:PublicationVolume
144 Nd7fb76ff8a334e41bd18a7358a59c667 schema:name pubmed_id
145 schema:value 25380971
146 rdf:type schema:PropertyValue
147 Nde32117738814aada863975468e41365 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Weight-Bearing
149 rdf:type schema:DefinedTerm
150 Ne711a4f43f1244e984fb6738d2b74f89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Models, Animal
152 rdf:type schema:DefinedTerm
153 Nea84673165de404bb32fef659c01e3ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Heterografts
155 rdf:type schema:DefinedTerm
156 Nf36b7b2dd3834dd8b09dd1d0707a10c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Transplants
158 rdf:type schema:DefinedTerm
159 Nf5e6e7cbe1824258b3c8c0d3cbda623c rdf:first sg:person.01054504520.43
160 rdf:rest N72d2ae0097aa41d2ab145772fa876bcf
161 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
162 schema:name Medical and Health Sciences
163 rdf:type schema:DefinedTerm
164 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
165 schema:name Clinical Sciences
166 rdf:type schema:DefinedTerm
167 sg:journal.1104512 schema:issn 0942-2056
168 1433-7347
169 schema:name Knee Surgery, Sports Traumatology, Arthroscopy
170 schema:publisher Springer Nature
171 rdf:type schema:Periodical
172 sg:person.01036311131.78 schema:affiliation grid-institutes:grid.419649.7
173 schema:familyName Turnbull
174 schema:givenName Travis Lee
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036311131.78
176 rdf:type schema:Person
177 sg:person.01054504520.43 schema:affiliation grid-institutes:grid.419649.7
178 schema:familyName Williams
179 schema:givenName Brady T.
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054504520.43
181 rdf:type schema:Person
182 sg:person.01132551556.81 schema:affiliation grid-institutes:grid.419648.6
183 schema:familyName Jaglowski
184 schema:givenName Jeffrey R.
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132551556.81
186 rdf:type schema:Person
187 sg:person.01224377675.49 schema:affiliation grid-institutes:grid.419648.6
188 schema:familyName LaPrade
189 schema:givenName Robert F.
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224377675.49
191 rdf:type schema:Person
192 sg:person.01253763100.82 schema:affiliation grid-institutes:grid.419649.7
193 schema:familyName Wijdicks
194 schema:givenName Coen A.
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253763100.82
196 rdf:type schema:Person
197 sg:pub.10.1007/s00167-008-0560-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020435105
198 https://doi.org/10.1007/s00167-008-0560-8
199 rdf:type schema:CreativeWork
200 sg:pub.10.1007/s00167-008-0654-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001812014
201 https://doi.org/10.1007/s00167-008-0654-3
202 rdf:type schema:CreativeWork
203 sg:pub.10.1007/s00167-009-0925-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032686825
204 https://doi.org/10.1007/s00167-009-0925-7
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/s00167-011-1833-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038279977
207 https://doi.org/10.1007/s00167-011-1833-1
208 rdf:type schema:CreativeWork
209 sg:pub.10.1007/s001670050224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016791165
210 https://doi.org/10.1007/s001670050224
211 rdf:type schema:CreativeWork
212 sg:pub.10.1007/s001670100230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029487835
213 https://doi.org/10.1007/s001670100230
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/s00402-002-0409-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050864957
216 https://doi.org/10.1007/s00402-002-0409-4
217 rdf:type schema:CreativeWork
218 grid-institutes:grid.419648.6 schema:alternateName The Steadman Clinic, 181 West Meadow Drive, Suite 400, 81657, Vail, CO, USA
219 schema:name Department of BioMedical Engineering, Steadman Philippon Research Institute, 181 West Meadow Drive, Suite 1000, 81657, Vail, CO, USA
220 The Steadman Clinic, 181 West Meadow Drive, Suite 400, 81657, Vail, CO, USA
221 rdf:type schema:Organization
222 grid-institutes:grid.419649.7 schema:alternateName Department of BioMedical Engineering, Steadman Philippon Research Institute, 181 West Meadow Drive, Suite 1000, 81657, Vail, CO, USA
223 schema:name Department of BioMedical Engineering, Steadman Philippon Research Institute, 181 West Meadow Drive, Suite 1000, 81657, Vail, CO, USA
224 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...