Quantitative MRI in the evaluation of articular cartilage health: reproducibility and variability with a focus on T2 mapping View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-10-30

AUTHORS

Rachel K. Surowiec, Erin P. Lucas, Charles P. Ho

ABSTRACT

PurposeEarly diagnosis of cartilage degeneration and longitudinal tracking of cartilage health including repair following surgical intervention would benefit from the ability to detect and monitor changes of the articular cartilage non-invasively and before gross morphological alterations appear.MethodsQuantitative MR imaging has shown promising results with various imaging biomarkers such as T2 mapping, T1 rho and dGEMRIC demonstrating sensitivity in the detection of biochemical alterations within tissues of interest. However, acquiring accurate and clinically valuable quantitative data has proven challenging, and the reproducibility of the quantitative mapping technique and its values are essential. Although T2 mapping has been the focus in this discussion, all quantitative mapping techniques are subject to the same issues including variability in the imaging protocol, unloading and exercise, analysis, scanner and coil, calculation methods, and segmentation and registration concerns.ResultsThe causes for variability between time points longitudinally in a patient, among patients, and among centres need to be understood further and the issues addressed.ConclusionsThe potential clinical applications of quantitative mapping are vast, but, before the clinical community can take full advantage of this tool, it must be automated, standardized, validated, and have proven reproducibility prior to its implementation into the standard clinical care routine. More... »

PAGES

1385-1395

References to SciGraph publications

  • 2012-02-25. Non-traumatic anterior cruciate ligament abnormalities and their relationship to osteoarthritis using morphological grading and cartilage T2 relaxation times: data from the Osteoarthritis Initiative (OAI) in SKELETAL RADIOLOGY
  • 2010-05-27. Longitudinal evaluation of cartilage repair tissue after microfracture using T2-mapping: a case report with arthroscopic and MRI correlation in KNEE SURGERY, SPORTS TRAUMATOLOGY, ARTHROSCOPY
  • 2012-06-12. Advanced MR methods at ultra-high field (7 Tesla) for clinical musculoskeletal applications in EUROPEAN RADIOLOGY
  • 2009-11-25. T2 and T2* mapping in patients after matrix-associated autologous chondrocyte transplantation: initial results on clinical use with 3.0-Tesla MRI in EUROPEAN RADIOLOGY
  • 2012-10-07. Treatment of a hip capsular injury in a professional soccer player with platelet-rich plasma and bone marrow aspirate concentrate therapy in KNEE SURGERY, SPORTS TRAUMATOLOGY, ARTHROSCOPY
  • 2012-12-23. Regeneration of articular cartilage of the knee in RHEUMATOLOGY INTERNATIONAL
  • 2008-12-23. Evaluation and comparison of cartilage repair tissue of the patella and medial femoral condyle by using morphological MRI and biochemical zonal T2 mapping in EUROPEAN RADIOLOGY
  • 2011-09-20. Texture analysis of cartilage T2 maps: individuals with risk factors for OA have higher and more heterogeneous knee cartilage MR T2 compared to normal controls - data from the osteoarthritis initiative in ARTHRITIS RESEARCH & THERAPY
  • 2011-11-24. Why radiography should no longer be considered a surrogate outcome measure for longitudinal assessment of cartilage in knee osteoarthritis in ARTHRITIS RESEARCH & THERAPY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00167-013-2714-6

    DOI

    http://dx.doi.org/10.1007/s00167-013-2714-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012854725

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/24170187


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cartilage Diseases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cartilage, Articular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Joint Diseases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetic Resonance Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Wound Healing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Steadman Philippon Research Institute, 181\u00a0W Meadow Dr, Suite 1000, 81657, Vail, CO, USA", 
              "id": "http://www.grid.ac/institutes/grid.419649.7", 
              "name": [
                "Steadman Philippon Research Institute, 181\u00a0W Meadow Dr, Suite 1000, 81657, Vail, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Surowiec", 
            "givenName": "Rachel K.", 
            "id": "sg:person.01234261634.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234261634.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Steadman Philippon Research Institute, 181\u00a0W Meadow Dr, Suite 1000, 81657, Vail, CO, USA", 
              "id": "http://www.grid.ac/institutes/grid.419649.7", 
              "name": [
                "Steadman Philippon Research Institute, 181\u00a0W Meadow Dr, Suite 1000, 81657, Vail, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lucas", 
            "givenName": "Erin P.", 
            "id": "sg:person.01310252726.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310252726.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Steadman Philippon Research Institute, 181\u00a0W Meadow Dr, Suite 1000, 81657, Vail, CO, USA", 
              "id": "http://www.grid.ac/institutes/grid.419649.7", 
              "name": [
                "Steadman Philippon Research Institute, 181\u00a0W Meadow Dr, Suite 1000, 81657, Vail, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ho", 
            "givenName": "Charles P.", 
            "id": "sg:person.01125015442.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125015442.04"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00296-012-2601-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051528563", 
              "https://doi.org/10.1007/s00296-012-2601-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/ar3469", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045524084", 
              "https://doi.org/10.1186/ar3469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/ar3488", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030001218", 
              "https://doi.org/10.1186/ar3488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00167-010-1161-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007247223", 
              "https://doi.org/10.1007/s00167-010-1161-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00167-012-2232-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045136325", 
              "https://doi.org/10.1007/s00167-012-2232-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00256-012-1379-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032990525", 
              "https://doi.org/10.1007/s00256-012-1379-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-009-1669-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001586661", 
              "https://doi.org/10.1007/s00330-009-1669-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-012-2508-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043574463", 
              "https://doi.org/10.1007/s00330-012-2508-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-008-1249-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028049448", 
              "https://doi.org/10.1007/s00330-008-1249-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-10-30", 
        "datePublishedReg": "2013-10-30", 
        "description": "PurposeEarly diagnosis of cartilage degeneration and longitudinal tracking of cartilage health including repair following surgical intervention would benefit from the ability to detect and monitor changes of the articular cartilage non-invasively and before gross morphological alterations appear.MethodsQuantitative MR imaging has shown promising results with various imaging biomarkers such as T2 mapping, T1 rho and dGEMRIC demonstrating sensitivity in the detection of biochemical alterations within tissues of interest. However, acquiring accurate and clinically valuable quantitative data has proven challenging, and the reproducibility of the quantitative mapping technique and its values are essential. Although T2 mapping has been the focus in this discussion, all quantitative mapping techniques are subject to the same issues including variability in the imaging protocol, unloading and exercise, analysis, scanner and coil, calculation methods, and segmentation and registration concerns.ResultsThe causes for variability between time points longitudinally in a patient, among patients, and among centres need to be understood further and the issues addressed.ConclusionsThe potential clinical applications of quantitative mapping are vast, but, before the clinical community can take full advantage of this tool, it must be automated, standardized, validated, and have proven reproducibility prior to its implementation into the standard clinical care routine.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00167-013-2714-6", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1104512", 
            "issn": [
              "0942-2056", 
              "1433-7347"
            ], 
            "name": "Knee Surgery, Sports Traumatology, Arthroscopy", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "22"
          }
        ], 
        "keywords": [
          "quantitative mapping techniques", 
          "T2 mapping", 
          "cartilage health", 
          "potential clinical applications", 
          "articular cartilage health", 
          "surgical intervention", 
          "care routines", 
          "imaging biomarkers", 
          "cartilage degeneration", 
          "MR imaging", 
          "biochemical alterations", 
          "quantitative MRI", 
          "time points", 
          "gross morphological alterations", 
          "imaging protocol", 
          "morphological alterations", 
          "clinical community", 
          "clinical applications", 
          "patients", 
          "articular cartilage", 
          "longitudinal tracking", 
          "health", 
          "tissue of interest", 
          "alterations", 
          "valuable quantitative data", 
          "degeneration", 
          "diagnosis", 
          "MRI", 
          "biomarkers", 
          "promising results", 
          "intervention", 
          "ResultsThe", 
          "exercise", 
          "tissue", 
          "repair", 
          "cartilage", 
          "imaging", 
          "quantitative data", 
          "reproducibility", 
          "variability", 
          "evaluation", 
          "center", 
          "protocol", 
          "sensitivity", 
          "mapping technique", 
          "T1 rho", 
          "Rho", 
          "focus", 
          "quantitative mapping", 
          "changes", 
          "scanner", 
          "ability", 
          "concern", 
          "data", 
          "detection", 
          "unloading", 
          "routines", 
          "technique", 
          "analysis", 
          "results", 
          "issues", 
          "values", 
          "tool", 
          "mapping", 
          "community", 
          "method", 
          "point", 
          "interest", 
          "discussion", 
          "same issues", 
          "coil", 
          "advantages", 
          "implementation", 
          "applications", 
          "tracking", 
          "segmentation", 
          "full advantage", 
          "calculation method", 
          "MethodsQuantitative MR imaging", 
          "registration concerns", 
          "ConclusionsThe potential clinical applications", 
          "standard clinical care routine", 
          "clinical care routine"
        ], 
        "name": "Quantitative MRI in the evaluation of articular cartilage health: reproducibility and variability with a focus on T2 mapping", 
        "pagination": "1385-1395", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012854725"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00167-013-2714-6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "24170187"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00167-013-2714-6", 
          "https://app.dimensions.ai/details/publication/pub.1012854725"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_597.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00167-013-2714-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00167-013-2714-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00167-013-2714-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00167-013-2714-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00167-013-2714-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    223 TRIPLES      22 PREDICATES      125 URIs      108 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00167-013-2714-6 schema:about N3d91b903e58448cab3792a430cab09c5
    2 N51f192b5866343a2a162daa9da76e8f2
    3 N8424050cebea4d259d0468576c9fc3e9
    4 N9f2f20c0eb5649dba42e33aa47e8fe59
    5 Nb13d1395a3c24166aab63a869b1670f0
    6 Nbb5f60f1b8664f9f9e73e7ea7af0627e
    7 Nd30ae06371c4435a99d776d9f73f5488
    8 anzsrc-for:11
    9 anzsrc-for:1103
    10 schema:author N9ab756a795ad4fe6a470b7a54f7eeacc
    11 schema:citation sg:pub.10.1007/s00167-010-1161-x
    12 sg:pub.10.1007/s00167-012-2232-y
    13 sg:pub.10.1007/s00256-012-1379-4
    14 sg:pub.10.1007/s00296-012-2601-3
    15 sg:pub.10.1007/s00330-008-1249-6
    16 sg:pub.10.1007/s00330-009-1669-y
    17 sg:pub.10.1007/s00330-012-2508-0
    18 sg:pub.10.1186/ar3469
    19 sg:pub.10.1186/ar3488
    20 schema:datePublished 2013-10-30
    21 schema:datePublishedReg 2013-10-30
    22 schema:description PurposeEarly diagnosis of cartilage degeneration and longitudinal tracking of cartilage health including repair following surgical intervention would benefit from the ability to detect and monitor changes of the articular cartilage non-invasively and before gross morphological alterations appear.MethodsQuantitative MR imaging has shown promising results with various imaging biomarkers such as T2 mapping, T1 rho and dGEMRIC demonstrating sensitivity in the detection of biochemical alterations within tissues of interest. However, acquiring accurate and clinically valuable quantitative data has proven challenging, and the reproducibility of the quantitative mapping technique and its values are essential. Although T2 mapping has been the focus in this discussion, all quantitative mapping techniques are subject to the same issues including variability in the imaging protocol, unloading and exercise, analysis, scanner and coil, calculation methods, and segmentation and registration concerns.ResultsThe causes for variability between time points longitudinally in a patient, among patients, and among centres need to be understood further and the issues addressed.ConclusionsThe potential clinical applications of quantitative mapping are vast, but, before the clinical community can take full advantage of this tool, it must be automated, standardized, validated, and have proven reproducibility prior to its implementation into the standard clinical care routine.
    23 schema:genre article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree false
    26 schema:isPartOf N4a6871cf9ee5440ca71ed4456e80ad80
    27 N6605fac5ad524f4f9f387fb913c7d52c
    28 sg:journal.1104512
    29 schema:keywords ConclusionsThe potential clinical applications
    30 MR imaging
    31 MRI
    32 MethodsQuantitative MR imaging
    33 ResultsThe
    34 Rho
    35 T1 rho
    36 T2 mapping
    37 ability
    38 advantages
    39 alterations
    40 analysis
    41 applications
    42 articular cartilage
    43 articular cartilage health
    44 biochemical alterations
    45 biomarkers
    46 calculation method
    47 care routines
    48 cartilage
    49 cartilage degeneration
    50 cartilage health
    51 center
    52 changes
    53 clinical applications
    54 clinical care routine
    55 clinical community
    56 coil
    57 community
    58 concern
    59 data
    60 degeneration
    61 detection
    62 diagnosis
    63 discussion
    64 evaluation
    65 exercise
    66 focus
    67 full advantage
    68 gross morphological alterations
    69 health
    70 imaging
    71 imaging biomarkers
    72 imaging protocol
    73 implementation
    74 interest
    75 intervention
    76 issues
    77 longitudinal tracking
    78 mapping
    79 mapping technique
    80 method
    81 morphological alterations
    82 patients
    83 point
    84 potential clinical applications
    85 promising results
    86 protocol
    87 quantitative MRI
    88 quantitative data
    89 quantitative mapping
    90 quantitative mapping techniques
    91 registration concerns
    92 repair
    93 reproducibility
    94 results
    95 routines
    96 same issues
    97 scanner
    98 segmentation
    99 sensitivity
    100 standard clinical care routine
    101 surgical intervention
    102 technique
    103 time points
    104 tissue
    105 tissue of interest
    106 tool
    107 tracking
    108 unloading
    109 valuable quantitative data
    110 values
    111 variability
    112 schema:name Quantitative MRI in the evaluation of articular cartilage health: reproducibility and variability with a focus on T2 mapping
    113 schema:pagination 1385-1395
    114 schema:productId N1cf1b7013ed4460684c0b6b970a80e77
    115 N931aa82f8d9748dcacaac89f76e96199
    116 Nd11ff72da6ea4b5380b30f6f77ef1b07
    117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012854725
    118 https://doi.org/10.1007/s00167-013-2714-6
    119 schema:sdDatePublished 2021-11-01T18:20
    120 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    121 schema:sdPublisher N89288d05169d4a9b99eeab6e2930c2ae
    122 schema:url https://doi.org/10.1007/s00167-013-2714-6
    123 sgo:license sg:explorer/license/
    124 sgo:sdDataset articles
    125 rdf:type schema:ScholarlyArticle
    126 N1cf1b7013ed4460684c0b6b970a80e77 schema:name pubmed_id
    127 schema:value 24170187
    128 rdf:type schema:PropertyValue
    129 N3d91b903e58448cab3792a430cab09c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Reproducibility of Results
    131 rdf:type schema:DefinedTerm
    132 N4a6871cf9ee5440ca71ed4456e80ad80 schema:issueNumber 6
    133 rdf:type schema:PublicationIssue
    134 N51f192b5866343a2a162daa9da76e8f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Humans
    136 rdf:type schema:DefinedTerm
    137 N6605fac5ad524f4f9f387fb913c7d52c schema:volumeNumber 22
    138 rdf:type schema:PublicationVolume
    139 N789310009e664611a1ff7d870c8034c4 rdf:first sg:person.01310252726.10
    140 rdf:rest Ndd72338f95874aafac1d21899c28f110
    141 N8424050cebea4d259d0468576c9fc3e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Joint Diseases
    143 rdf:type schema:DefinedTerm
    144 N89288d05169d4a9b99eeab6e2930c2ae schema:name Springer Nature - SN SciGraph project
    145 rdf:type schema:Organization
    146 N931aa82f8d9748dcacaac89f76e96199 schema:name dimensions_id
    147 schema:value pub.1012854725
    148 rdf:type schema:PropertyValue
    149 N9ab756a795ad4fe6a470b7a54f7eeacc rdf:first sg:person.01234261634.08
    150 rdf:rest N789310009e664611a1ff7d870c8034c4
    151 N9f2f20c0eb5649dba42e33aa47e8fe59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Wound Healing
    153 rdf:type schema:DefinedTerm
    154 Nb13d1395a3c24166aab63a869b1670f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Cartilage Diseases
    156 rdf:type schema:DefinedTerm
    157 Nbb5f60f1b8664f9f9e73e7ea7af0627e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Magnetic Resonance Imaging
    159 rdf:type schema:DefinedTerm
    160 Nd11ff72da6ea4b5380b30f6f77ef1b07 schema:name doi
    161 schema:value 10.1007/s00167-013-2714-6
    162 rdf:type schema:PropertyValue
    163 Nd30ae06371c4435a99d776d9f73f5488 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Cartilage, Articular
    165 rdf:type schema:DefinedTerm
    166 Ndd72338f95874aafac1d21899c28f110 rdf:first sg:person.01125015442.04
    167 rdf:rest rdf:nil
    168 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    169 schema:name Medical and Health Sciences
    170 rdf:type schema:DefinedTerm
    171 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    172 schema:name Clinical Sciences
    173 rdf:type schema:DefinedTerm
    174 sg:journal.1104512 schema:issn 0942-2056
    175 1433-7347
    176 schema:name Knee Surgery, Sports Traumatology, Arthroscopy
    177 schema:publisher Springer Nature
    178 rdf:type schema:Periodical
    179 sg:person.01125015442.04 schema:affiliation grid-institutes:grid.419649.7
    180 schema:familyName Ho
    181 schema:givenName Charles P.
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125015442.04
    183 rdf:type schema:Person
    184 sg:person.01234261634.08 schema:affiliation grid-institutes:grid.419649.7
    185 schema:familyName Surowiec
    186 schema:givenName Rachel K.
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234261634.08
    188 rdf:type schema:Person
    189 sg:person.01310252726.10 schema:affiliation grid-institutes:grid.419649.7
    190 schema:familyName Lucas
    191 schema:givenName Erin P.
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310252726.10
    193 rdf:type schema:Person
    194 sg:pub.10.1007/s00167-010-1161-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007247223
    195 https://doi.org/10.1007/s00167-010-1161-x
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s00167-012-2232-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1045136325
    198 https://doi.org/10.1007/s00167-012-2232-y
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s00256-012-1379-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032990525
    201 https://doi.org/10.1007/s00256-012-1379-4
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/s00296-012-2601-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051528563
    204 https://doi.org/10.1007/s00296-012-2601-3
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s00330-008-1249-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028049448
    207 https://doi.org/10.1007/s00330-008-1249-6
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s00330-009-1669-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1001586661
    210 https://doi.org/10.1007/s00330-009-1669-y
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/s00330-012-2508-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043574463
    213 https://doi.org/10.1007/s00330-012-2508-0
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1186/ar3469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045524084
    216 https://doi.org/10.1186/ar3469
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1186/ar3488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030001218
    219 https://doi.org/10.1186/ar3488
    220 rdf:type schema:CreativeWork
    221 grid-institutes:grid.419649.7 schema:alternateName Steadman Philippon Research Institute, 181 W Meadow Dr, Suite 1000, 81657, Vail, CO, USA
    222 schema:name Steadman Philippon Research Institute, 181 W Meadow Dr, Suite 1000, 81657, Vail, CO, USA
    223 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...