Multi-scale study of the transitional shock-wave boundary layer interaction in hypersonic flow View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-11-29

AUTHORS

Mathieu Lugrin, Samir Beneddine, Eric Garnier, Reynald Bur

ABSTRACT

A high-fidelity simulation of the massively separated shock/transitional boundary layer interaction caused by a 15-degrees axisymmetrical compression ramp is performed at a free stream Mach number of 6 and a transitional Reynolds number. The chosen configuration yields a strongly multiscale dynamics of the flow as the separated region oscillates at low-frequency, and high-frequency transitional instabilities are triggered by the injection of a generic noise at the inlet of the simulation. The simulation is post-processed using Proper Orthogonal Decomposition to extract the large scale low-frequency dynamics of the recirculation region. The bubble dynamics from the simulation is then compared to the results of a global linear stability analysis about the mean flow. A critical interpretation of the eigenspectrum of the linearized Navier–Stokes operator is presented. The recirculation region dynamics is found to be dominated by two coexisting modes, a quasi-steady one that expresses itself mainly in the reattachment region and that is caused by the interaction of two self-sustained instabilities, and an unsteady one linked with the separation shock-wave and the mixing layer. The unsteady mode is driven by a feedback loop in the recirculation region, which may also be relevant for other unsteady shock-motion already documented for shock-wave/turbulent boundary layer interaction. The impact of the large-scale dynamics on the transitional one is then assessed through the numerical filtering of those low wavenumber modes; they are found to have no impact on the transitional dynamics. More... »

PAGES

277-302

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00162-021-00595-7

DOI

http://dx.doi.org/10.1007/s00162-021-00595-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1143455199


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0901", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Aerospace Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "DAAA, ONERA, Paris Saclay University, 92190, Meudon, France", 
          "id": "http://www.grid.ac/institutes/grid.4365.4", 
          "name": [
            "DAAA, ONERA, Paris Saclay University, 92190, Meudon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lugrin", 
        "givenName": "Mathieu", 
        "id": "sg:person.010105725113.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010105725113.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DAAA, ONERA, Paris Saclay University, 92190, Meudon, France", 
          "id": "http://www.grid.ac/institutes/grid.4365.4", 
          "name": [
            "DAAA, ONERA, Paris Saclay University, 92190, Meudon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beneddine", 
        "givenName": "Samir", 
        "id": "sg:person.012055232027.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012055232027.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DAAA, ONERA, Paris Saclay University, 92190, Meudon, France", 
          "id": "http://www.grid.ac/institutes/grid.4365.4", 
          "name": [
            "DAAA, ONERA, Paris Saclay University, 92190, Meudon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garnier", 
        "givenName": "Eric", 
        "id": "sg:person.013435750413.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013435750413.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DAAA, ONERA, Paris Saclay University, 92190, Meudon, France", 
          "id": "http://www.grid.ac/institutes/grid.4365.4", 
          "name": [
            "DAAA, ONERA, Paris Saclay University, 92190, Meudon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bur", 
        "givenName": "Reynald", 
        "id": "sg:person.014462436131.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014462436131.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01387235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045584174", 
          "https://doi.org/10.1007/bf01387235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-9898-7_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047264599", 
          "https://doi.org/10.1007/978-1-4020-9898-7_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00162-009-0103-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052891163", 
          "https://doi.org/10.1007/s00162-009-0103-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00193-009-0232-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028195911", 
          "https://doi.org/10.1007/s00193-009-0232-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00162-016-0397-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051284747", 
          "https://doi.org/10.1007/s00162-016-0397-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-11-29", 
    "datePublishedReg": "2021-11-29", 
    "description": "A high-fidelity simulation of the massively separated shock/transitional boundary layer interaction caused by a 15-degrees axisymmetrical compression ramp is performed at a free stream Mach number of 6 and a transitional Reynolds number. The chosen configuration yields a strongly multiscale dynamics of the flow as the separated region oscillates at low-frequency, and high-frequency transitional instabilities are triggered by the injection of a generic noise at the inlet of the simulation. The simulation is post-processed using Proper Orthogonal Decomposition to extract the large scale low-frequency dynamics of the recirculation region. The bubble dynamics from the simulation is then compared to the results of a global linear stability analysis about the mean flow. A critical interpretation of the eigenspectrum of the linearized Navier\u2013Stokes operator is presented. The recirculation region dynamics is found to be dominated by two coexisting modes, a quasi-steady one that expresses itself mainly in the reattachment region and that is caused by the interaction of two self-sustained instabilities, and an unsteady one linked with the separation shock-wave and the mixing layer. The unsteady mode is driven by a feedback loop in the recirculation region, which may also be relevant for other unsteady shock-motion already documented for shock-wave/turbulent boundary layer interaction. The impact of the large-scale dynamics on the transitional one is then assessed through the numerical filtering of those low wavenumber modes; they are found to have no impact on the transitional dynamics.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00162-021-00595-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052938", 
        "issn": [
          "0935-4964", 
          "1432-2250"
        ], 
        "name": "Theoretical and Computational Fluid Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "keywords": [
      "boundary layer interaction", 
      "layer interaction", 
      "recirculation region", 
      "transitional shock wave boundary layer interactions", 
      "shock wave boundary layer interaction", 
      "turbulent boundary layer interaction", 
      "linearized Navier\u2013Stokes operator", 
      "free-stream Mach number", 
      "transitional Reynolds numbers", 
      "self-sustained instability", 
      "stream Mach number", 
      "proper orthogonal decomposition", 
      "quasi-steady ones", 
      "compression ramp", 
      "Navier\u2013Stokes operator", 
      "reattachment region", 
      "linear stability analysis", 
      "Reynolds number", 
      "global linear stability analysis", 
      "bubble dynamics", 
      "hypersonic flow", 
      "unsteady modes", 
      "Mach number", 
      "orthogonal decomposition", 
      "mean flow", 
      "low-frequency dynamics", 
      "numerical filtering", 
      "unsteady one", 
      "stability analysis", 
      "high-fidelity simulation", 
      "multi-scale study", 
      "separated regions", 
      "low-wavenumber modes", 
      "transitional instability", 
      "simulations", 
      "flow", 
      "wavenumber modes", 
      "multiscale dynamics", 
      "large-scale dynamics", 
      "region dynamics", 
      "mode", 
      "inlet", 
      "instability", 
      "layer", 
      "dynamics", 
      "transitional one", 
      "filtering", 
      "noise", 
      "feedback loop", 
      "ramp", 
      "configuration", 
      "separation", 
      "loop", 
      "decomposition", 
      "one", 
      "generic noise", 
      "region", 
      "interaction", 
      "eigenspectrum", 
      "impact", 
      "results", 
      "operators", 
      "number", 
      "analysis", 
      "injection", 
      "study", 
      "interpretation", 
      "transitional dynamics", 
      "critical interpretation"
    ], 
    "name": "Multi-scale study of the transitional shock-wave boundary layer interaction in hypersonic flow", 
    "pagination": "277-302", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1143455199"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00162-021-00595-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00162-021-00595-7", 
      "https://app.dimensions.ai/details/publication/pub.1143455199"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_877.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00162-021-00595-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00595-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00595-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00595-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00595-7'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      22 PREDICATES      100 URIs      86 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00162-021-00595-7 schema:about anzsrc-for:09
2 anzsrc-for:0901
3 anzsrc-for:0915
4 schema:author N5dd4bf42dcbb4655af8ae572b81bf6b2
5 schema:citation sg:pub.10.1007/978-1-4020-9898-7_12
6 sg:pub.10.1007/bf01387235
7 sg:pub.10.1007/s00162-009-0103-z
8 sg:pub.10.1007/s00162-016-0397-6
9 sg:pub.10.1007/s00193-009-0232-8
10 schema:datePublished 2021-11-29
11 schema:datePublishedReg 2021-11-29
12 schema:description A high-fidelity simulation of the massively separated shock/transitional boundary layer interaction caused by a 15-degrees axisymmetrical compression ramp is performed at a free stream Mach number of 6 and a transitional Reynolds number. The chosen configuration yields a strongly multiscale dynamics of the flow as the separated region oscillates at low-frequency, and high-frequency transitional instabilities are triggered by the injection of a generic noise at the inlet of the simulation. The simulation is post-processed using Proper Orthogonal Decomposition to extract the large scale low-frequency dynamics of the recirculation region. The bubble dynamics from the simulation is then compared to the results of a global linear stability analysis about the mean flow. A critical interpretation of the eigenspectrum of the linearized Navier–Stokes operator is presented. The recirculation region dynamics is found to be dominated by two coexisting modes, a quasi-steady one that expresses itself mainly in the reattachment region and that is caused by the interaction of two self-sustained instabilities, and an unsteady one linked with the separation shock-wave and the mixing layer. The unsteady mode is driven by a feedback loop in the recirculation region, which may also be relevant for other unsteady shock-motion already documented for shock-wave/turbulent boundary layer interaction. The impact of the large-scale dynamics on the transitional one is then assessed through the numerical filtering of those low wavenumber modes; they are found to have no impact on the transitional dynamics.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf Nba8fba0f707147bd95700a72ecf15aa0
17 Nea4b1c8efd5c4b119f6c8b531d7217e6
18 sg:journal.1052938
19 schema:keywords Mach number
20 Navier–Stokes operator
21 Reynolds number
22 analysis
23 boundary layer interaction
24 bubble dynamics
25 compression ramp
26 configuration
27 critical interpretation
28 decomposition
29 dynamics
30 eigenspectrum
31 feedback loop
32 filtering
33 flow
34 free-stream Mach number
35 generic noise
36 global linear stability analysis
37 high-fidelity simulation
38 hypersonic flow
39 impact
40 injection
41 inlet
42 instability
43 interaction
44 interpretation
45 large-scale dynamics
46 layer
47 layer interaction
48 linear stability analysis
49 linearized Navier–Stokes operator
50 loop
51 low-frequency dynamics
52 low-wavenumber modes
53 mean flow
54 mode
55 multi-scale study
56 multiscale dynamics
57 noise
58 number
59 numerical filtering
60 one
61 operators
62 orthogonal decomposition
63 proper orthogonal decomposition
64 quasi-steady ones
65 ramp
66 reattachment region
67 recirculation region
68 region
69 region dynamics
70 results
71 self-sustained instability
72 separated regions
73 separation
74 shock wave boundary layer interaction
75 simulations
76 stability analysis
77 stream Mach number
78 study
79 transitional Reynolds numbers
80 transitional dynamics
81 transitional instability
82 transitional one
83 transitional shock wave boundary layer interactions
84 turbulent boundary layer interaction
85 unsteady modes
86 unsteady one
87 wavenumber modes
88 schema:name Multi-scale study of the transitional shock-wave boundary layer interaction in hypersonic flow
89 schema:pagination 277-302
90 schema:productId Nb5ada006c5664357beafa954548b59ff
91 Nf6393bb23e134960b967da73eae26a39
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143455199
93 https://doi.org/10.1007/s00162-021-00595-7
94 schema:sdDatePublished 2022-05-20T07:38
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher Nc854d84cf1594aaf8c132349c280eb25
97 schema:url https://doi.org/10.1007/s00162-021-00595-7
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N1f7ee69c97fa40cf97ca5789d61cfa48 rdf:first sg:person.013435750413.72
102 rdf:rest Na5bc7a5881844d4f971310b616667cb8
103 N5dd4bf42dcbb4655af8ae572b81bf6b2 rdf:first sg:person.010105725113.35
104 rdf:rest Na9cb27bd570a45d4b0ab2785aeed0e44
105 Na5bc7a5881844d4f971310b616667cb8 rdf:first sg:person.014462436131.31
106 rdf:rest rdf:nil
107 Na9cb27bd570a45d4b0ab2785aeed0e44 rdf:first sg:person.012055232027.99
108 rdf:rest N1f7ee69c97fa40cf97ca5789d61cfa48
109 Nb5ada006c5664357beafa954548b59ff schema:name doi
110 schema:value 10.1007/s00162-021-00595-7
111 rdf:type schema:PropertyValue
112 Nba8fba0f707147bd95700a72ecf15aa0 schema:issueNumber 2
113 rdf:type schema:PublicationIssue
114 Nc854d84cf1594aaf8c132349c280eb25 schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 Nea4b1c8efd5c4b119f6c8b531d7217e6 schema:volumeNumber 36
117 rdf:type schema:PublicationVolume
118 Nf6393bb23e134960b967da73eae26a39 schema:name dimensions_id
119 schema:value pub.1143455199
120 rdf:type schema:PropertyValue
121 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
122 schema:name Engineering
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0901 schema:inDefinedTermSet anzsrc-for:
125 schema:name Aerospace Engineering
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
128 schema:name Interdisciplinary Engineering
129 rdf:type schema:DefinedTerm
130 sg:journal.1052938 schema:issn 0935-4964
131 1432-2250
132 schema:name Theoretical and Computational Fluid Dynamics
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.010105725113.35 schema:affiliation grid-institutes:grid.4365.4
136 schema:familyName Lugrin
137 schema:givenName Mathieu
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010105725113.35
139 rdf:type schema:Person
140 sg:person.012055232027.99 schema:affiliation grid-institutes:grid.4365.4
141 schema:familyName Beneddine
142 schema:givenName Samir
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012055232027.99
144 rdf:type schema:Person
145 sg:person.013435750413.72 schema:affiliation grid-institutes:grid.4365.4
146 schema:familyName Garnier
147 schema:givenName Eric
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013435750413.72
149 rdf:type schema:Person
150 sg:person.014462436131.31 schema:affiliation grid-institutes:grid.4365.4
151 schema:familyName Bur
152 schema:givenName Reynald
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014462436131.31
154 rdf:type schema:Person
155 sg:pub.10.1007/978-1-4020-9898-7_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047264599
156 https://doi.org/10.1007/978-1-4020-9898-7_12
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/bf01387235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045584174
159 https://doi.org/10.1007/bf01387235
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s00162-009-0103-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1052891163
162 https://doi.org/10.1007/s00162-009-0103-z
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s00162-016-0397-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051284747
165 https://doi.org/10.1007/s00162-016-0397-6
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s00193-009-0232-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028195911
168 https://doi.org/10.1007/s00193-009-0232-8
169 rdf:type schema:CreativeWork
170 grid-institutes:grid.4365.4 schema:alternateName DAAA, ONERA, Paris Saclay University, 92190, Meudon, France
171 schema:name DAAA, ONERA, Paris Saclay University, 92190, Meudon, France
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...