Ontology type: schema:ScholarlyArticle Open Access: True
2021-09-12
AUTHORSSaurabh S. Sawant, Deborah A. Levin, Vassilios Theofilis
ABSTRACTLinear instability of high-speed boundary layers is routinely examined assuming quiescent edge conditions, without reference to the internal structure of shocks or to instabilities potentially generated in them. Our recent work has shown that the kinetically modeled internal nonequilibrium zone of straight shocks away from solid boundaries exhibits low-frequency molecular fluctuations. The presence of the dominant low frequencies observed using the direct simulation Monte Carlo (DSMC) method has been explained as a consequence of the well-known bimodal probability density function (PDF) of the energy of particles inside a shock. Here, PDFs of particle energies are derived in the upstream and downstream equilibrium regions, as well as inside shocks, and it is shown for the first time that they have the form of the noncentral Chi-squared (NCCS) distributions. A linear correlation is proposed to relate the change in the shape of the analytical PDFs at a specified upstream number density and temperature as a function of Mach number, within the range 3≤M≤10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3 \le M \le 10$$\end{document}, with the DSMC-derived average characteristic low-frequency of shocks, as computed in our earlier work. At a given Mach number M=7.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=7.2$$\end{document} and upstream number density n1=1022m-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_1=10^{22}\,\hbox {m}^{-3}$$\end{document}, it is shown that the variation in DSMC-derived low frequencies is correlated with the change in most-probable-speed inside shocks at the location of maximum bulk velocity gradient for upstream translational temperature in the range ∼90≤Ttr,1/(K)≤1420\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 90 \le T_{tr,1}/(K) \le 1420$$\end{document}. Using the proposed linear functions, average low frequencies are estimated within the examined ranges of Mach number and input temperature and a semi-empirical relationship is derived to predict low-frequency oscillations in shocks. Our model can be used to provide realistic physics-based boundary conditions in receptivity and linear stability analysis studies of laminar-turbulent transition in high-speed flows. More... »
PAGES25-40
http://scigraph.springernature.com/pub.10.1007/s00162-021-00589-5
DOIhttp://dx.doi.org/10.1007/s00162-021-00589-5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1141065762
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Interdisciplinary Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Aerospace, The University of Illinois at Urbana-Champaign, 61801, Champaign, IL, USA",
"id": "http://www.grid.ac/institutes/grid.35403.31",
"name": [
"Department of Aerospace, The University of Illinois at Urbana-Champaign, 61801, Champaign, IL, USA"
],
"type": "Organization"
},
"familyName": "Sawant",
"givenName": "Saurabh S.",
"id": "sg:person.015515653467.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015515653467.51"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Aerospace, The University of Illinois at Urbana-Champaign, 61801, Champaign, IL, USA",
"id": "http://www.grid.ac/institutes/grid.35403.31",
"name": [
"Department of Aerospace, The University of Illinois at Urbana-Champaign, 61801, Champaign, IL, USA"
],
"type": "Organization"
},
"familyName": "Levin",
"givenName": "Deborah A.",
"id": "sg:person.014436460124.92",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014436460124.92"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Escola Politecnica, Universidade S\u00e3o Paulo, Av. Prof. Mello Moraes 2231, CEP, 5508-900, S\u00e3o Paulo-SP, Brazil",
"id": "http://www.grid.ac/institutes/grid.11899.38",
"name": [
"School of Engineering, University of Liverpool, L69 3GH, The Quadrangle, Brownlow Hill, UK",
"Escola Politecnica, Universidade S\u00e3o Paulo, Av. Prof. Mello Moraes 2231, CEP, 5508-900, S\u00e3o Paulo-SP, Brazil"
],
"type": "Organization"
},
"familyName": "Theofilis",
"givenName": "Vassilios",
"id": "sg:person.010604637067.23",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010604637067.23"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-90-481-3723-7_2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047184628",
"https://doi.org/10.1007/978-90-481-3723-7_2"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-09-12",
"datePublishedReg": "2021-09-12",
"description": "Linear instability of high-speed boundary layers is routinely examined assuming quiescent edge conditions, without reference to the internal structure of shocks or to instabilities potentially generated in them. Our recent work has shown that the kinetically modeled internal nonequilibrium zone of straight shocks away from solid boundaries exhibits low-frequency molecular fluctuations. The presence of the dominant low frequencies observed using the direct simulation Monte Carlo (DSMC) method has been explained as a consequence of the well-known bimodal probability density function (PDF) of the energy of particles inside a shock. Here, PDFs of particle energies are derived in the upstream and downstream equilibrium regions, as well as inside shocks, and it is shown for the first time that they have the form of the noncentral Chi-squared (NCCS) distributions. A linear correlation is proposed to relate the change in the shape of the analytical PDFs at a specified upstream number density and temperature as a function of Mach number, within the range 3\u2264M\u226410\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$3 \\le M \\le 10$$\\end{document}, with the DSMC-derived average characteristic low-frequency of shocks, as computed in our earlier work. At a given Mach number M=7.2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$M=7.2$$\\end{document} and upstream number density n1=1022m-3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n_1=10^{22}\\,\\hbox {m}^{-3}$$\\end{document}, it is shown that the variation in DSMC-derived low frequencies is correlated with the change in most-probable-speed inside shocks at the location of maximum bulk velocity gradient for upstream translational temperature in the range \u223c90\u2264Ttr,1/(K)\u22641420\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\sim 90 \\le T_{tr,1}/(K) \\le 1420$$\\end{document}. Using the proposed linear functions, average low frequencies are estimated within the examined ranges of Mach number and input temperature and a semi-empirical relationship is derived to predict low-frequency oscillations in shocks. Our model can be used to provide realistic physics-based boundary conditions in receptivity and linear stability analysis studies of laminar-turbulent transition in high-speed flows.",
"genre": "article",
"id": "sg:pub.10.1007/s00162-021-00589-5",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.6793304",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1052938",
"issn": [
"0935-4964",
"1432-2250"
],
"name": "Theoretical and Computational Fluid Dynamics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "36"
}
],
"keywords": [
"number density",
"energy of particles",
"probability density function",
"particle energy",
"bulk velocity gradient",
"direct simulation Monte Carlo method",
"simulation Monte Carlo method",
"translational temperature",
"Mach number",
"one-dimensional shock",
"dominant low frequency",
"Monte Carlo method",
"high-speed flow",
"analytical probability density function",
"low frequency",
"equilibrium region",
"low-frequency fluctuations",
"bimodal probability density function",
"Carlo method",
"noncentral chi-squared distribution",
"molecular fluctuations",
"chi-squared distribution",
"nonequilibrium zone",
"linear instability",
"stability analysis studies",
"low-frequency oscillations",
"energy",
"internal structure",
"density function",
"velocity gradient",
"fluctuations",
"boundary conditions",
"solid boundaries",
"analytical predictions",
"density",
"temperature",
"first time",
"edge conditions",
"linear function",
"semi-empirical relationship",
"instability",
"high-speed boundary layers",
"boundary layer",
"frequency",
"range",
"oscillations",
"laminar-turbulent transition",
"transition",
"earlier work",
"particles",
"shock",
"recent work",
"layer",
"input temperature",
"structure",
"shape",
"function",
"distribution",
"work",
"region",
"number",
"boundaries",
"gradient",
"linear correlation",
"prediction",
"flow",
"model",
"conditions",
"variation",
"correlation",
"method",
"time",
"presence",
"form",
"analysis study",
"changes",
"consequences",
"zone",
"reference",
"location",
"study",
"relationship",
"receptivity"
],
"name": "Analytical prediction of low-frequency fluctuations inside a one-dimensional shock",
"pagination": "25-40",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1141065762"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00162-021-00589-5"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00162-021-00589-5",
"https://app.dimensions.ai/details/publication/pub.1141065762"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:38",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_895.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00162-021-00589-5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00589-5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00589-5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00589-5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00589-5'
This table displays all metadata directly associated to this object as RDF triples.
165 TRIPLES
22 PREDICATES
109 URIs
100 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00162-021-00589-5 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0915 |
3 | ″ | schema:author | N2f9976a3af4046bc8dd64da2789a9ae8 |
4 | ″ | schema:citation | sg:pub.10.1007/978-90-481-3723-7_2 |
5 | ″ | schema:datePublished | 2021-09-12 |
6 | ″ | schema:datePublishedReg | 2021-09-12 |
7 | ″ | schema:description | Linear instability of high-speed boundary layers is routinely examined assuming quiescent edge conditions, without reference to the internal structure of shocks or to instabilities potentially generated in them. Our recent work has shown that the kinetically modeled internal nonequilibrium zone of straight shocks away from solid boundaries exhibits low-frequency molecular fluctuations. The presence of the dominant low frequencies observed using the direct simulation Monte Carlo (DSMC) method has been explained as a consequence of the well-known bimodal probability density function (PDF) of the energy of particles inside a shock. Here, PDFs of particle energies are derived in the upstream and downstream equilibrium regions, as well as inside shocks, and it is shown for the first time that they have the form of the noncentral Chi-squared (NCCS) distributions. A linear correlation is proposed to relate the change in the shape of the analytical PDFs at a specified upstream number density and temperature as a function of Mach number, within the range 3≤M≤10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3 \le M \le 10$$\end{document}, with the DSMC-derived average characteristic low-frequency of shocks, as computed in our earlier work. At a given Mach number M=7.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=7.2$$\end{document} and upstream number density n1=1022m-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_1=10^{22}\,\hbox {m}^{-3}$$\end{document}, it is shown that the variation in DSMC-derived low frequencies is correlated with the change in most-probable-speed inside shocks at the location of maximum bulk velocity gradient for upstream translational temperature in the range ∼90≤Ttr,1/(K)≤1420\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 90 \le T_{tr,1}/(K) \le 1420$$\end{document}. Using the proposed linear functions, average low frequencies are estimated within the examined ranges of Mach number and input temperature and a semi-empirical relationship is derived to predict low-frequency oscillations in shocks. Our model can be used to provide realistic physics-based boundary conditions in receptivity and linear stability analysis studies of laminar-turbulent transition in high-speed flows. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | N07e913cada5d484c80b462c27f570d47 |
12 | ″ | ″ | N17d38203c2de41f892678a1d7b9c31fa |
13 | ″ | ″ | sg:journal.1052938 |
14 | ″ | schema:keywords | Carlo method |
15 | ″ | ″ | Mach number |
16 | ″ | ″ | Monte Carlo method |
17 | ″ | ″ | analysis study |
18 | ″ | ″ | analytical predictions |
19 | ″ | ″ | analytical probability density function |
20 | ″ | ″ | bimodal probability density function |
21 | ″ | ″ | boundaries |
22 | ″ | ″ | boundary conditions |
23 | ″ | ″ | boundary layer |
24 | ″ | ″ | bulk velocity gradient |
25 | ″ | ″ | changes |
26 | ″ | ″ | chi-squared distribution |
27 | ″ | ″ | conditions |
28 | ″ | ″ | consequences |
29 | ″ | ″ | correlation |
30 | ″ | ″ | density |
31 | ″ | ″ | density function |
32 | ″ | ″ | direct simulation Monte Carlo method |
33 | ″ | ″ | distribution |
34 | ″ | ″ | dominant low frequency |
35 | ″ | ″ | earlier work |
36 | ″ | ″ | edge conditions |
37 | ″ | ″ | energy |
38 | ″ | ″ | energy of particles |
39 | ″ | ″ | equilibrium region |
40 | ″ | ″ | first time |
41 | ″ | ″ | flow |
42 | ″ | ″ | fluctuations |
43 | ″ | ″ | form |
44 | ″ | ″ | frequency |
45 | ″ | ″ | function |
46 | ″ | ″ | gradient |
47 | ″ | ″ | high-speed boundary layers |
48 | ″ | ″ | high-speed flow |
49 | ″ | ″ | input temperature |
50 | ″ | ″ | instability |
51 | ″ | ″ | internal structure |
52 | ″ | ″ | laminar-turbulent transition |
53 | ″ | ″ | layer |
54 | ″ | ″ | linear correlation |
55 | ″ | ″ | linear function |
56 | ″ | ″ | linear instability |
57 | ″ | ″ | location |
58 | ″ | ″ | low frequency |
59 | ″ | ″ | low-frequency fluctuations |
60 | ″ | ″ | low-frequency oscillations |
61 | ″ | ″ | method |
62 | ″ | ″ | model |
63 | ″ | ″ | molecular fluctuations |
64 | ″ | ″ | noncentral chi-squared distribution |
65 | ″ | ″ | nonequilibrium zone |
66 | ″ | ″ | number |
67 | ″ | ″ | number density |
68 | ″ | ″ | one-dimensional shock |
69 | ″ | ″ | oscillations |
70 | ″ | ″ | particle energy |
71 | ″ | ″ | particles |
72 | ″ | ″ | prediction |
73 | ″ | ″ | presence |
74 | ″ | ″ | probability density function |
75 | ″ | ″ | range |
76 | ″ | ″ | recent work |
77 | ″ | ″ | receptivity |
78 | ″ | ″ | reference |
79 | ″ | ″ | region |
80 | ″ | ″ | relationship |
81 | ″ | ″ | semi-empirical relationship |
82 | ″ | ″ | shape |
83 | ″ | ″ | shock |
84 | ″ | ″ | simulation Monte Carlo method |
85 | ″ | ″ | solid boundaries |
86 | ″ | ″ | stability analysis studies |
87 | ″ | ″ | structure |
88 | ″ | ″ | study |
89 | ″ | ″ | temperature |
90 | ″ | ″ | time |
91 | ″ | ″ | transition |
92 | ″ | ″ | translational temperature |
93 | ″ | ″ | variation |
94 | ″ | ″ | velocity gradient |
95 | ″ | ″ | work |
96 | ″ | ″ | zone |
97 | ″ | schema:name | Analytical prediction of low-frequency fluctuations inside a one-dimensional shock |
98 | ″ | schema:pagination | 25-40 |
99 | ″ | schema:productId | N3f28d9ae30cf4e0e96e71d71fc743afc |
100 | ″ | ″ | Nb6ae7190df534a679e1c6dd8eb020a33 |
101 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1141065762 |
102 | ″ | ″ | https://doi.org/10.1007/s00162-021-00589-5 |
103 | ″ | schema:sdDatePublished | 2022-05-20T07:38 |
104 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
105 | ″ | schema:sdPublisher | Ncf0eaab433bc41c29cc732b964eb6a78 |
106 | ″ | schema:url | https://doi.org/10.1007/s00162-021-00589-5 |
107 | ″ | sgo:license | sg:explorer/license/ |
108 | ″ | sgo:sdDataset | articles |
109 | ″ | rdf:type | schema:ScholarlyArticle |
110 | N07e913cada5d484c80b462c27f570d47 | schema:volumeNumber | 36 |
111 | ″ | rdf:type | schema:PublicationVolume |
112 | N17d38203c2de41f892678a1d7b9c31fa | schema:issueNumber | 1 |
113 | ″ | rdf:type | schema:PublicationIssue |
114 | N2f9976a3af4046bc8dd64da2789a9ae8 | rdf:first | sg:person.015515653467.51 |
115 | ″ | rdf:rest | Neac9208d5b8b46948d2d65dec4834397 |
116 | N3f28d9ae30cf4e0e96e71d71fc743afc | schema:name | dimensions_id |
117 | ″ | schema:value | pub.1141065762 |
118 | ″ | rdf:type | schema:PropertyValue |
119 | Nb6ae7190df534a679e1c6dd8eb020a33 | schema:name | doi |
120 | ″ | schema:value | 10.1007/s00162-021-00589-5 |
121 | ″ | rdf:type | schema:PropertyValue |
122 | Ncf0eaab433bc41c29cc732b964eb6a78 | schema:name | Springer Nature - SN SciGraph project |
123 | ″ | rdf:type | schema:Organization |
124 | Ncfe9604c64c94c928418811cab14e9e3 | rdf:first | sg:person.010604637067.23 |
125 | ″ | rdf:rest | rdf:nil |
126 | Neac9208d5b8b46948d2d65dec4834397 | rdf:first | sg:person.014436460124.92 |
127 | ″ | rdf:rest | Ncfe9604c64c94c928418811cab14e9e3 |
128 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
129 | ″ | schema:name | Engineering |
130 | ″ | rdf:type | schema:DefinedTerm |
131 | anzsrc-for:0915 | schema:inDefinedTermSet | anzsrc-for: |
132 | ″ | schema:name | Interdisciplinary Engineering |
133 | ″ | rdf:type | schema:DefinedTerm |
134 | sg:grant.6793304 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s00162-021-00589-5 |
135 | ″ | rdf:type | schema:MonetaryGrant |
136 | sg:journal.1052938 | schema:issn | 0935-4964 |
137 | ″ | ″ | 1432-2250 |
138 | ″ | schema:name | Theoretical and Computational Fluid Dynamics |
139 | ″ | schema:publisher | Springer Nature |
140 | ″ | rdf:type | schema:Periodical |
141 | sg:person.010604637067.23 | schema:affiliation | grid-institutes:grid.11899.38 |
142 | ″ | schema:familyName | Theofilis |
143 | ″ | schema:givenName | Vassilios |
144 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010604637067.23 |
145 | ″ | rdf:type | schema:Person |
146 | sg:person.014436460124.92 | schema:affiliation | grid-institutes:grid.35403.31 |
147 | ″ | schema:familyName | Levin |
148 | ″ | schema:givenName | Deborah A. |
149 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014436460124.92 |
150 | ″ | rdf:type | schema:Person |
151 | sg:person.015515653467.51 | schema:affiliation | grid-institutes:grid.35403.31 |
152 | ″ | schema:familyName | Sawant |
153 | ″ | schema:givenName | Saurabh S. |
154 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015515653467.51 |
155 | ″ | rdf:type | schema:Person |
156 | sg:pub.10.1007/978-90-481-3723-7_2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1047184628 |
157 | ″ | ″ | https://doi.org/10.1007/978-90-481-3723-7_2 |
158 | ″ | rdf:type | schema:CreativeWork |
159 | grid-institutes:grid.11899.38 | schema:alternateName | Escola Politecnica, Universidade São Paulo, Av. Prof. Mello Moraes 2231, CEP, 5508-900, São Paulo-SP, Brazil |
160 | ″ | schema:name | Escola Politecnica, Universidade São Paulo, Av. Prof. Mello Moraes 2231, CEP, 5508-900, São Paulo-SP, Brazil |
161 | ″ | ″ | School of Engineering, University of Liverpool, L69 3GH, The Quadrangle, Brownlow Hill, UK |
162 | ″ | rdf:type | schema:Organization |
163 | grid-institutes:grid.35403.31 | schema:alternateName | Department of Aerospace, The University of Illinois at Urbana-Champaign, 61801, Champaign, IL, USA |
164 | ″ | schema:name | Department of Aerospace, The University of Illinois at Urbana-Champaign, 61801, Champaign, IL, USA |
165 | ″ | rdf:type | schema:Organization |