Analytical prediction of low-frequency fluctuations inside a one-dimensional shock View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-09-12

AUTHORS

Saurabh S. Sawant, Deborah A. Levin, Vassilios Theofilis

ABSTRACT

Linear instability of high-speed boundary layers is routinely examined assuming quiescent edge conditions, without reference to the internal structure of shocks or to instabilities potentially generated in them. Our recent work has shown that the kinetically modeled internal nonequilibrium zone of straight shocks away from solid boundaries exhibits low-frequency molecular fluctuations. The presence of the dominant low frequencies observed using the direct simulation Monte Carlo (DSMC) method has been explained as a consequence of the well-known bimodal probability density function (PDF) of the energy of particles inside a shock. Here, PDFs of particle energies are derived in the upstream and downstream equilibrium regions, as well as inside shocks, and it is shown for the first time that they have the form of the noncentral Chi-squared (NCCS) distributions. A linear correlation is proposed to relate the change in the shape of the analytical PDFs at a specified upstream number density and temperature as a function of Mach number, within the range 3≤M≤10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3 \le M \le 10$$\end{document}, with the DSMC-derived average characteristic low-frequency of shocks, as computed in our earlier work. At a given Mach number M=7.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=7.2$$\end{document} and upstream number density n1=1022m-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_1=10^{22}\,\hbox {m}^{-3}$$\end{document}, it is shown that the variation in DSMC-derived low frequencies is correlated with the change in most-probable-speed inside shocks at the location of maximum bulk velocity gradient for upstream translational temperature in the range ∼90≤Ttr,1/(K)≤1420\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 90 \le T_{tr,1}/(K) \le 1420$$\end{document}. Using the proposed linear functions, average low frequencies are estimated within the examined ranges of Mach number and input temperature and a semi-empirical relationship is derived to predict low-frequency oscillations in shocks. Our model can be used to provide realistic physics-based boundary conditions in receptivity and linear stability analysis studies of laminar-turbulent transition in high-speed flows. More... »

PAGES

25-40

References to SciGraph publications

  • 2009-11-10. A Thermodynamic Lower Bound on Transition-Triggering Disturbances in SEVENTH IUTAM SYMPOSIUM ON LAMINAR-TURBULENT TRANSITION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00162-021-00589-5

    DOI

    http://dx.doi.org/10.1007/s00162-021-00589-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1141065762


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Aerospace, The University of Illinois at Urbana-Champaign, 61801, Champaign, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.35403.31", 
              "name": [
                "Department of Aerospace, The University of Illinois at Urbana-Champaign, 61801, Champaign, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sawant", 
            "givenName": "Saurabh S.", 
            "id": "sg:person.015515653467.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015515653467.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Aerospace, The University of Illinois at Urbana-Champaign, 61801, Champaign, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.35403.31", 
              "name": [
                "Department of Aerospace, The University of Illinois at Urbana-Champaign, 61801, Champaign, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Levin", 
            "givenName": "Deborah A.", 
            "id": "sg:person.014436460124.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014436460124.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Escola Politecnica, Universidade S\u00e3o Paulo, Av. Prof. Mello Moraes 2231, CEP, 5508-900, S\u00e3o Paulo-SP, Brazil", 
              "id": "http://www.grid.ac/institutes/grid.11899.38", 
              "name": [
                "School of Engineering, University of Liverpool, L69 3GH, The Quadrangle, Brownlow Hill, UK", 
                "Escola Politecnica, Universidade S\u00e3o Paulo, Av. Prof. Mello Moraes 2231, CEP, 5508-900, S\u00e3o Paulo-SP, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Theofilis", 
            "givenName": "Vassilios", 
            "id": "sg:person.010604637067.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010604637067.23"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-90-481-3723-7_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047184628", 
              "https://doi.org/10.1007/978-90-481-3723-7_2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-09-12", 
        "datePublishedReg": "2021-09-12", 
        "description": "Linear instability of high-speed boundary layers is routinely examined assuming quiescent edge conditions, without reference to the internal structure of shocks or to instabilities potentially generated in them. Our recent work has shown that the kinetically modeled internal nonequilibrium zone of straight shocks away from solid boundaries exhibits low-frequency molecular fluctuations. The presence of the dominant low frequencies observed using the direct simulation Monte Carlo (DSMC) method has been explained as a consequence of the well-known bimodal probability density function (PDF) of the energy of particles inside a shock. Here, PDFs of particle energies are derived in the upstream and downstream equilibrium regions, as well as inside shocks, and it is shown for the first time that they have the form of the noncentral Chi-squared (NCCS) distributions. A linear correlation is proposed to relate the change in the shape of the analytical PDFs at a specified upstream number density and temperature as a function of Mach number, within the range 3\u2264M\u226410\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$3 \\le M \\le 10$$\\end{document}, with the DSMC-derived average characteristic low-frequency of shocks, as computed in our earlier work. At a given Mach number M=7.2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$M=7.2$$\\end{document} and upstream number density n1=1022m-3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n_1=10^{22}\\,\\hbox {m}^{-3}$$\\end{document}, it is shown that the variation in DSMC-derived low frequencies is correlated with the change in most-probable-speed inside shocks at the location of maximum bulk velocity gradient for upstream translational temperature in the range \u223c90\u2264Ttr,1/(K)\u22641420\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\sim 90 \\le T_{tr,1}/(K) \\le 1420$$\\end{document}. Using the proposed linear functions, average low frequencies are estimated within the examined ranges of Mach number and input temperature and a semi-empirical relationship is derived to predict low-frequency oscillations in shocks. Our model can be used to provide realistic physics-based boundary conditions in receptivity and linear stability analysis studies of laminar-turbulent transition in high-speed flows.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00162-021-00589-5", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6793304", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052938", 
            "issn": [
              "0935-4964", 
              "1432-2250"
            ], 
            "name": "Theoretical and Computational Fluid Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "36"
          }
        ], 
        "keywords": [
          "number density", 
          "energy of particles", 
          "probability density function", 
          "particle energy", 
          "bulk velocity gradient", 
          "direct simulation Monte Carlo method", 
          "simulation Monte Carlo method", 
          "translational temperature", 
          "Mach number", 
          "one-dimensional shock", 
          "dominant low frequency", 
          "Monte Carlo method", 
          "high-speed flow", 
          "analytical probability density function", 
          "low frequency", 
          "equilibrium region", 
          "low-frequency fluctuations", 
          "bimodal probability density function", 
          "Carlo method", 
          "noncentral chi-squared distribution", 
          "molecular fluctuations", 
          "chi-squared distribution", 
          "nonequilibrium zone", 
          "linear instability", 
          "stability analysis studies", 
          "low-frequency oscillations", 
          "energy", 
          "internal structure", 
          "density function", 
          "velocity gradient", 
          "fluctuations", 
          "boundary conditions", 
          "solid boundaries", 
          "analytical predictions", 
          "density", 
          "temperature", 
          "first time", 
          "edge conditions", 
          "linear function", 
          "semi-empirical relationship", 
          "instability", 
          "high-speed boundary layers", 
          "boundary layer", 
          "frequency", 
          "range", 
          "oscillations", 
          "laminar-turbulent transition", 
          "transition", 
          "earlier work", 
          "particles", 
          "shock", 
          "recent work", 
          "layer", 
          "input temperature", 
          "structure", 
          "shape", 
          "function", 
          "distribution", 
          "work", 
          "region", 
          "number", 
          "boundaries", 
          "gradient", 
          "linear correlation", 
          "prediction", 
          "flow", 
          "model", 
          "conditions", 
          "variation", 
          "correlation", 
          "method", 
          "time", 
          "presence", 
          "form", 
          "analysis study", 
          "changes", 
          "consequences", 
          "zone", 
          "reference", 
          "location", 
          "study", 
          "relationship", 
          "receptivity"
        ], 
        "name": "Analytical prediction of low-frequency fluctuations inside a one-dimensional shock", 
        "pagination": "25-40", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1141065762"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00162-021-00589-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00162-021-00589-5", 
          "https://app.dimensions.ai/details/publication/pub.1141065762"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_895.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00162-021-00589-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00589-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00589-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00589-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00589-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    165 TRIPLES      22 PREDICATES      109 URIs      100 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00162-021-00589-5 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author N2f9976a3af4046bc8dd64da2789a9ae8
    4 schema:citation sg:pub.10.1007/978-90-481-3723-7_2
    5 schema:datePublished 2021-09-12
    6 schema:datePublishedReg 2021-09-12
    7 schema:description Linear instability of high-speed boundary layers is routinely examined assuming quiescent edge conditions, without reference to the internal structure of shocks or to instabilities potentially generated in them. Our recent work has shown that the kinetically modeled internal nonequilibrium zone of straight shocks away from solid boundaries exhibits low-frequency molecular fluctuations. The presence of the dominant low frequencies observed using the direct simulation Monte Carlo (DSMC) method has been explained as a consequence of the well-known bimodal probability density function (PDF) of the energy of particles inside a shock. Here, PDFs of particle energies are derived in the upstream and downstream equilibrium regions, as well as inside shocks, and it is shown for the first time that they have the form of the noncentral Chi-squared (NCCS) distributions. A linear correlation is proposed to relate the change in the shape of the analytical PDFs at a specified upstream number density and temperature as a function of Mach number, within the range 3≤M≤10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3 \le M \le 10$$\end{document}, with the DSMC-derived average characteristic low-frequency of shocks, as computed in our earlier work. At a given Mach number M=7.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=7.2$$\end{document} and upstream number density n1=1022m-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_1=10^{22}\,\hbox {m}^{-3}$$\end{document}, it is shown that the variation in DSMC-derived low frequencies is correlated with the change in most-probable-speed inside shocks at the location of maximum bulk velocity gradient for upstream translational temperature in the range ∼90≤Ttr,1/(K)≤1420\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 90 \le T_{tr,1}/(K) \le 1420$$\end{document}. Using the proposed linear functions, average low frequencies are estimated within the examined ranges of Mach number and input temperature and a semi-empirical relationship is derived to predict low-frequency oscillations in shocks. Our model can be used to provide realistic physics-based boundary conditions in receptivity and linear stability analysis studies of laminar-turbulent transition in high-speed flows.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree true
    11 schema:isPartOf N07e913cada5d484c80b462c27f570d47
    12 N17d38203c2de41f892678a1d7b9c31fa
    13 sg:journal.1052938
    14 schema:keywords Carlo method
    15 Mach number
    16 Monte Carlo method
    17 analysis study
    18 analytical predictions
    19 analytical probability density function
    20 bimodal probability density function
    21 boundaries
    22 boundary conditions
    23 boundary layer
    24 bulk velocity gradient
    25 changes
    26 chi-squared distribution
    27 conditions
    28 consequences
    29 correlation
    30 density
    31 density function
    32 direct simulation Monte Carlo method
    33 distribution
    34 dominant low frequency
    35 earlier work
    36 edge conditions
    37 energy
    38 energy of particles
    39 equilibrium region
    40 first time
    41 flow
    42 fluctuations
    43 form
    44 frequency
    45 function
    46 gradient
    47 high-speed boundary layers
    48 high-speed flow
    49 input temperature
    50 instability
    51 internal structure
    52 laminar-turbulent transition
    53 layer
    54 linear correlation
    55 linear function
    56 linear instability
    57 location
    58 low frequency
    59 low-frequency fluctuations
    60 low-frequency oscillations
    61 method
    62 model
    63 molecular fluctuations
    64 noncentral chi-squared distribution
    65 nonequilibrium zone
    66 number
    67 number density
    68 one-dimensional shock
    69 oscillations
    70 particle energy
    71 particles
    72 prediction
    73 presence
    74 probability density function
    75 range
    76 recent work
    77 receptivity
    78 reference
    79 region
    80 relationship
    81 semi-empirical relationship
    82 shape
    83 shock
    84 simulation Monte Carlo method
    85 solid boundaries
    86 stability analysis studies
    87 structure
    88 study
    89 temperature
    90 time
    91 transition
    92 translational temperature
    93 variation
    94 velocity gradient
    95 work
    96 zone
    97 schema:name Analytical prediction of low-frequency fluctuations inside a one-dimensional shock
    98 schema:pagination 25-40
    99 schema:productId N3f28d9ae30cf4e0e96e71d71fc743afc
    100 Nb6ae7190df534a679e1c6dd8eb020a33
    101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141065762
    102 https://doi.org/10.1007/s00162-021-00589-5
    103 schema:sdDatePublished 2022-05-20T07:38
    104 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    105 schema:sdPublisher Ncf0eaab433bc41c29cc732b964eb6a78
    106 schema:url https://doi.org/10.1007/s00162-021-00589-5
    107 sgo:license sg:explorer/license/
    108 sgo:sdDataset articles
    109 rdf:type schema:ScholarlyArticle
    110 N07e913cada5d484c80b462c27f570d47 schema:volumeNumber 36
    111 rdf:type schema:PublicationVolume
    112 N17d38203c2de41f892678a1d7b9c31fa schema:issueNumber 1
    113 rdf:type schema:PublicationIssue
    114 N2f9976a3af4046bc8dd64da2789a9ae8 rdf:first sg:person.015515653467.51
    115 rdf:rest Neac9208d5b8b46948d2d65dec4834397
    116 N3f28d9ae30cf4e0e96e71d71fc743afc schema:name dimensions_id
    117 schema:value pub.1141065762
    118 rdf:type schema:PropertyValue
    119 Nb6ae7190df534a679e1c6dd8eb020a33 schema:name doi
    120 schema:value 10.1007/s00162-021-00589-5
    121 rdf:type schema:PropertyValue
    122 Ncf0eaab433bc41c29cc732b964eb6a78 schema:name Springer Nature - SN SciGraph project
    123 rdf:type schema:Organization
    124 Ncfe9604c64c94c928418811cab14e9e3 rdf:first sg:person.010604637067.23
    125 rdf:rest rdf:nil
    126 Neac9208d5b8b46948d2d65dec4834397 rdf:first sg:person.014436460124.92
    127 rdf:rest Ncfe9604c64c94c928418811cab14e9e3
    128 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Engineering
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Interdisciplinary Engineering
    133 rdf:type schema:DefinedTerm
    134 sg:grant.6793304 http://pending.schema.org/fundedItem sg:pub.10.1007/s00162-021-00589-5
    135 rdf:type schema:MonetaryGrant
    136 sg:journal.1052938 schema:issn 0935-4964
    137 1432-2250
    138 schema:name Theoretical and Computational Fluid Dynamics
    139 schema:publisher Springer Nature
    140 rdf:type schema:Periodical
    141 sg:person.010604637067.23 schema:affiliation grid-institutes:grid.11899.38
    142 schema:familyName Theofilis
    143 schema:givenName Vassilios
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010604637067.23
    145 rdf:type schema:Person
    146 sg:person.014436460124.92 schema:affiliation grid-institutes:grid.35403.31
    147 schema:familyName Levin
    148 schema:givenName Deborah A.
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014436460124.92
    150 rdf:type schema:Person
    151 sg:person.015515653467.51 schema:affiliation grid-institutes:grid.35403.31
    152 schema:familyName Sawant
    153 schema:givenName Saurabh S.
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015515653467.51
    155 rdf:type schema:Person
    156 sg:pub.10.1007/978-90-481-3723-7_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047184628
    157 https://doi.org/10.1007/978-90-481-3723-7_2
    158 rdf:type schema:CreativeWork
    159 grid-institutes:grid.11899.38 schema:alternateName Escola Politecnica, Universidade São Paulo, Av. Prof. Mello Moraes 2231, CEP, 5508-900, São Paulo-SP, Brazil
    160 schema:name Escola Politecnica, Universidade São Paulo, Av. Prof. Mello Moraes 2231, CEP, 5508-900, São Paulo-SP, Brazil
    161 School of Engineering, University of Liverpool, L69 3GH, The Quadrangle, Brownlow Hill, UK
    162 rdf:type schema:Organization
    163 grid-institutes:grid.35403.31 schema:alternateName Department of Aerospace, The University of Illinois at Urbana-Champaign, 61801, Champaign, IL, USA
    164 schema:name Department of Aerospace, The University of Illinois at Urbana-Champaign, 61801, Champaign, IL, USA
    165 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...