A stochastic SPOD-Galerkin model for broadband turbulent flows View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-09-01

AUTHORS

Tianyi Chu, Oliver T. Schmidt

ABSTRACT

The use of spectral proper orthogonal decomposition (SPOD) to construct low-order models for broadband turbulent flows is explored. The choice of SPOD modes as basis vectors is motivated by their optimality and space-time coherence properties for statistically stationary flows. This work follows the modeling paradigm that complex nonlinear fluid dynamics can be approximated as stochastically forced linear systems. The proposed stochastic two-level SPOD-Galerkin model governs a compound state consisting of the modal expansion coefficients and forcing coefficients. In the first level, the modal expansion coefficients are advanced by the forced linearized Navier-Stokes operator under the linear time-invariant assumption. The second level governs the forcing coefficients, which compensate for the offset between the linear approximation and the true state. At this level, least squares regression is used to achieve closure by modeling nonlinear interactions between modes. The statistics of the remaining residue are used to construct a dewhitening filter that facilitates the use of white noise to drive the model. If the data residue is used as the sole input, the model accurately recovers the original flow trajectory for all times. If the residue is modeled as stochastic input, then the model generates surrogate data that accurately reproduces the second-order statistics and dynamics of the original data. The stochastic model uncertainty, predictability, and stability are quantified analytically and through Monte Carlo simulations. The model is demonstrated on large eddy simulation data of a turbulent jet at Mach number M=0.9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=0.9$$\end{document} and Reynolds number ReD≈106\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {Re}_D\approx 10^6$$\end{document}. More... »

PAGES

759-782

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00162-021-00588-6

DOI

http://dx.doi.org/10.1007/s00162-021-00588-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1140808391


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, 9500 Gilman Drive, 92093-0411, La Jolla, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, 9500 Gilman Drive, 92093-0411, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chu", 
        "givenName": "Tianyi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, 9500 Gilman Drive, 92093-0411, La Jolla, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, 9500 Gilman Drive, 92093-0411, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "Oliver T.", 
        "id": "sg:person.012605660013.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012605660013.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-71435-1_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050250175", 
          "https://doi.org/10.1007/978-3-642-71435-1_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01387235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045584174", 
          "https://doi.org/10.1007/bf01387235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001620050131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023300845", 
          "https://doi.org/10.1007/s001620050131"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-09-01", 
    "datePublishedReg": "2021-09-01", 
    "description": "The use of spectral proper orthogonal decomposition (SPOD) to construct low-order models for broadband turbulent flows is explored. The choice of SPOD modes as basis vectors is motivated by their optimality and space-time coherence properties for statistically stationary flows. This work follows the modeling paradigm that complex nonlinear fluid dynamics can be approximated as stochastically forced linear systems. The proposed stochastic two-level SPOD-Galerkin model governs a compound state consisting of the modal expansion coefficients and forcing coefficients. In the first level, the modal expansion coefficients are advanced by the forced linearized Navier-Stokes operator under the linear time-invariant assumption. The second level governs the forcing coefficients, which compensate for the offset between the linear approximation and the true state. At this level, least squares regression is used to achieve closure by modeling nonlinear interactions between modes. The statistics of the remaining residue are used to construct a dewhitening filter that facilitates the use of white noise to drive the model. If the data residue is used as the sole input, the model accurately recovers the original flow trajectory for all times. If the residue is modeled as stochastic input, then the model generates surrogate data that accurately reproduces the second-order statistics and dynamics of the original data. The stochastic model uncertainty, predictability, and stability are quantified analytically and through Monte Carlo simulations. The model is demonstrated on large eddy simulation data of a turbulent jet at Mach number M=0.9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$M=0.9$$\\end{document} and Reynolds number ReD\u2248106\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathrm {Re}_D\\approx 10^6$$\\end{document}.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00162-021-00588-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052938", 
        "issn": [
          "0935-4964", 
          "1432-2250"
        ], 
        "name": "Theoretical and Computational Fluid Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "keywords": [
      "spectral proper orthogonal decomposition", 
      "modal expansion coefficients", 
      "nonlinear fluid dynamics", 
      "stochastic model uncertainty", 
      "Navier\u2013Stokes operator", 
      "linear time-invariant assumption", 
      "low-order model", 
      "second-order statistics", 
      "eddy simulation data", 
      "proper orthogonal decomposition", 
      "large-eddy simulation data", 
      "linear systems", 
      "stochastic inputs", 
      "Monte Carlo simulations", 
      "Galerkin model", 
      "time-invariant assumption", 
      "linear approximation", 
      "stationary flow", 
      "broadband turbulent", 
      "model uncertainty", 
      "orthogonal decomposition", 
      "white noise", 
      "nonlinear interactions", 
      "SPOD modes", 
      "Carlo simulations", 
      "original flow", 
      "coherence properties", 
      "fluid dynamics", 
      "Reynolds number", 
      "basis vectors", 
      "modeling paradigm", 
      "data residue", 
      "Mach number", 
      "surrogate data", 
      "simulation data", 
      "true state", 
      "expansion coefficient", 
      "least squares regression", 
      "compound states", 
      "turbulent jet", 
      "turbulent", 
      "squares regression", 
      "statistics", 
      "dynamics", 
      "approximation", 
      "model", 
      "optimality", 
      "coefficient", 
      "original data", 
      "operators", 
      "second level", 
      "flow", 
      "first level", 
      "uncertainty", 
      "simulations", 
      "noise", 
      "input", 
      "assumption", 
      "filter", 
      "number", 
      "vector", 
      "state", 
      "decomposition", 
      "mode", 
      "jet", 
      "sole input", 
      "properties", 
      "system", 
      "stability", 
      "offset", 
      "data", 
      "work", 
      "predictability", 
      "choice", 
      "regression", 
      "use", 
      "time", 
      "interaction", 
      "paradigm", 
      "closure", 
      "levels", 
      "residues"
    ], 
    "name": "A stochastic SPOD-Galerkin model for broadband turbulent flows", 
    "pagination": "759-782", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1140808391"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00162-021-00588-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00162-021-00588-6", 
      "https://app.dimensions.ai/details/publication/pub.1140808391"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_889.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00162-021-00588-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00588-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00588-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00588-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00588-6'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      22 PREDICATES      110 URIs      99 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00162-021-00588-6 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nbb068cd441de45b1b73dec090dc95337
4 schema:citation sg:pub.10.1007/978-3-642-71435-1_13
5 sg:pub.10.1007/bf01387235
6 sg:pub.10.1007/s001620050131
7 schema:datePublished 2021-09-01
8 schema:datePublishedReg 2021-09-01
9 schema:description The use of spectral proper orthogonal decomposition (SPOD) to construct low-order models for broadband turbulent flows is explored. The choice of SPOD modes as basis vectors is motivated by their optimality and space-time coherence properties for statistically stationary flows. This work follows the modeling paradigm that complex nonlinear fluid dynamics can be approximated as stochastically forced linear systems. The proposed stochastic two-level SPOD-Galerkin model governs a compound state consisting of the modal expansion coefficients and forcing coefficients. In the first level, the modal expansion coefficients are advanced by the forced linearized Navier-Stokes operator under the linear time-invariant assumption. The second level governs the forcing coefficients, which compensate for the offset between the linear approximation and the true state. At this level, least squares regression is used to achieve closure by modeling nonlinear interactions between modes. The statistics of the remaining residue are used to construct a dewhitening filter that facilitates the use of white noise to drive the model. If the data residue is used as the sole input, the model accurately recovers the original flow trajectory for all times. If the residue is modeled as stochastic input, then the model generates surrogate data that accurately reproduces the second-order statistics and dynamics of the original data. The stochastic model uncertainty, predictability, and stability are quantified analytically and through Monte Carlo simulations. The model is demonstrated on large eddy simulation data of a turbulent jet at Mach number M=0.9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=0.9$$\end{document} and Reynolds number ReD≈106\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {Re}_D\approx 10^6$$\end{document}.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N3ca7c93a4279439b98d87ddc52b64b14
14 N4ee4b02a593148e3bdd088476c1ebc6b
15 sg:journal.1052938
16 schema:keywords Carlo simulations
17 Galerkin model
18 Mach number
19 Monte Carlo simulations
20 Navier–Stokes operator
21 Reynolds number
22 SPOD modes
23 approximation
24 assumption
25 basis vectors
26 broadband turbulent
27 choice
28 closure
29 coefficient
30 coherence properties
31 compound states
32 data
33 data residue
34 decomposition
35 dynamics
36 eddy simulation data
37 expansion coefficient
38 filter
39 first level
40 flow
41 fluid dynamics
42 input
43 interaction
44 jet
45 large-eddy simulation data
46 least squares regression
47 levels
48 linear approximation
49 linear systems
50 linear time-invariant assumption
51 low-order model
52 modal expansion coefficients
53 mode
54 model
55 model uncertainty
56 modeling paradigm
57 noise
58 nonlinear fluid dynamics
59 nonlinear interactions
60 number
61 offset
62 operators
63 optimality
64 original data
65 original flow
66 orthogonal decomposition
67 paradigm
68 predictability
69 proper orthogonal decomposition
70 properties
71 regression
72 residues
73 second level
74 second-order statistics
75 simulation data
76 simulations
77 sole input
78 spectral proper orthogonal decomposition
79 squares regression
80 stability
81 state
82 stationary flow
83 statistics
84 stochastic inputs
85 stochastic model uncertainty
86 surrogate data
87 system
88 time
89 time-invariant assumption
90 true state
91 turbulent
92 turbulent jet
93 uncertainty
94 use
95 vector
96 white noise
97 work
98 schema:name A stochastic SPOD-Galerkin model for broadband turbulent flows
99 schema:pagination 759-782
100 schema:productId N4c41c0da52ee42d2baf1188ea633a117
101 Nf3c8bf75b61d4694a2a372fcab3cd91f
102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140808391
103 https://doi.org/10.1007/s00162-021-00588-6
104 schema:sdDatePublished 2022-05-20T07:37
105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
106 schema:sdPublisher Nba4a4a77f7f749e097abadb14ca400a1
107 schema:url https://doi.org/10.1007/s00162-021-00588-6
108 sgo:license sg:explorer/license/
109 sgo:sdDataset articles
110 rdf:type schema:ScholarlyArticle
111 N3ca7c93a4279439b98d87ddc52b64b14 schema:issueNumber 6
112 rdf:type schema:PublicationIssue
113 N4c41c0da52ee42d2baf1188ea633a117 schema:name dimensions_id
114 schema:value pub.1140808391
115 rdf:type schema:PropertyValue
116 N4ee4b02a593148e3bdd088476c1ebc6b schema:volumeNumber 35
117 rdf:type schema:PublicationVolume
118 N80872df85ca547e096714f05453c0eea schema:affiliation grid-institutes:grid.266100.3
119 schema:familyName Chu
120 schema:givenName Tianyi
121 rdf:type schema:Person
122 Nb3fa9d27a1924a50b37b03f2517d3288 rdf:first sg:person.012605660013.82
123 rdf:rest rdf:nil
124 Nba4a4a77f7f749e097abadb14ca400a1 schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 Nbb068cd441de45b1b73dec090dc95337 rdf:first N80872df85ca547e096714f05453c0eea
127 rdf:rest Nb3fa9d27a1924a50b37b03f2517d3288
128 Nf3c8bf75b61d4694a2a372fcab3cd91f schema:name doi
129 schema:value 10.1007/s00162-021-00588-6
130 rdf:type schema:PropertyValue
131 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
132 schema:name Mathematical Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
135 schema:name Statistics
136 rdf:type schema:DefinedTerm
137 sg:journal.1052938 schema:issn 0935-4964
138 1432-2250
139 schema:name Theoretical and Computational Fluid Dynamics
140 schema:publisher Springer Nature
141 rdf:type schema:Periodical
142 sg:person.012605660013.82 schema:affiliation grid-institutes:grid.266100.3
143 schema:familyName Schmidt
144 schema:givenName Oliver T.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012605660013.82
146 rdf:type schema:Person
147 sg:pub.10.1007/978-3-642-71435-1_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050250175
148 https://doi.org/10.1007/978-3-642-71435-1_13
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/bf01387235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045584174
151 https://doi.org/10.1007/bf01387235
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s001620050131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023300845
154 https://doi.org/10.1007/s001620050131
155 rdf:type schema:CreativeWork
156 grid-institutes:grid.266100.3 schema:alternateName Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, 9500 Gilman Drive, 92093-0411, La Jolla, CA, USA
157 schema:name Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, 9500 Gilman Drive, 92093-0411, La Jolla, CA, USA
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...