Ontology type: schema:ScholarlyArticle Open Access: True
2021-09-01
AUTHORSTianyi Chu, Oliver T. Schmidt
ABSTRACTThe use of spectral proper orthogonal decomposition (SPOD) to construct low-order models for broadband turbulent flows is explored. The choice of SPOD modes as basis vectors is motivated by their optimality and space-time coherence properties for statistically stationary flows. This work follows the modeling paradigm that complex nonlinear fluid dynamics can be approximated as stochastically forced linear systems. The proposed stochastic two-level SPOD-Galerkin model governs a compound state consisting of the modal expansion coefficients and forcing coefficients. In the first level, the modal expansion coefficients are advanced by the forced linearized Navier-Stokes operator under the linear time-invariant assumption. The second level governs the forcing coefficients, which compensate for the offset between the linear approximation and the true state. At this level, least squares regression is used to achieve closure by modeling nonlinear interactions between modes. The statistics of the remaining residue are used to construct a dewhitening filter that facilitates the use of white noise to drive the model. If the data residue is used as the sole input, the model accurately recovers the original flow trajectory for all times. If the residue is modeled as stochastic input, then the model generates surrogate data that accurately reproduces the second-order statistics and dynamics of the original data. The stochastic model uncertainty, predictability, and stability are quantified analytically and through Monte Carlo simulations. The model is demonstrated on large eddy simulation data of a turbulent jet at Mach number M=0.9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=0.9$$\end{document} and Reynolds number ReD≈106\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {Re}_D\approx 10^6$$\end{document}. More... »
PAGES759-782
http://scigraph.springernature.com/pub.10.1007/s00162-021-00588-6
DOIhttp://dx.doi.org/10.1007/s00162-021-00588-6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1140808391
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, 9500 Gilman Drive, 92093-0411, La Jolla, CA, USA",
"id": "http://www.grid.ac/institutes/grid.266100.3",
"name": [
"Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, 9500 Gilman Drive, 92093-0411, La Jolla, CA, USA"
],
"type": "Organization"
},
"familyName": "Chu",
"givenName": "Tianyi",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, 9500 Gilman Drive, 92093-0411, La Jolla, CA, USA",
"id": "http://www.grid.ac/institutes/grid.266100.3",
"name": [
"Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, 9500 Gilman Drive, 92093-0411, La Jolla, CA, USA"
],
"type": "Organization"
},
"familyName": "Schmidt",
"givenName": "Oliver T.",
"id": "sg:person.012605660013.82",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012605660013.82"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-642-71435-1_13",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050250175",
"https://doi.org/10.1007/978-3-642-71435-1_13"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01387235",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045584174",
"https://doi.org/10.1007/bf01387235"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s001620050131",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023300845",
"https://doi.org/10.1007/s001620050131"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-09-01",
"datePublishedReg": "2021-09-01",
"description": "The use of spectral proper orthogonal decomposition (SPOD) to construct low-order models for broadband turbulent flows is explored. The choice of SPOD modes as basis vectors is motivated by their optimality and space-time coherence properties for statistically stationary flows. This work follows the modeling paradigm that complex nonlinear fluid dynamics can be approximated as stochastically forced linear systems. The proposed stochastic two-level SPOD-Galerkin model governs a compound state consisting of the modal expansion coefficients and forcing coefficients. In the first level, the modal expansion coefficients are advanced by the forced linearized Navier-Stokes operator under the linear time-invariant assumption. The second level governs the forcing coefficients, which compensate for the offset between the linear approximation and the true state. At this level, least squares regression is used to achieve closure by modeling nonlinear interactions between modes. The statistics of the remaining residue are used to construct a dewhitening filter that facilitates the use of white noise to drive the model. If the data residue is used as the sole input, the model accurately recovers the original flow trajectory for all times. If the residue is modeled as stochastic input, then the model generates surrogate data that accurately reproduces the second-order statistics and dynamics of the original data. The stochastic model uncertainty, predictability, and stability are quantified analytically and through Monte Carlo simulations. The model is demonstrated on large eddy simulation data of a turbulent jet at Mach number M=0.9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$M=0.9$$\\end{document} and Reynolds number ReD\u2248106\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathrm {Re}_D\\approx 10^6$$\\end{document}.",
"genre": "article",
"id": "sg:pub.10.1007/s00162-021-00588-6",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1052938",
"issn": [
"0935-4964",
"1432-2250"
],
"name": "Theoretical and Computational Fluid Dynamics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "6",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "35"
}
],
"keywords": [
"spectral proper orthogonal decomposition",
"modal expansion coefficients",
"nonlinear fluid dynamics",
"stochastic model uncertainty",
"Navier\u2013Stokes operator",
"linear time-invariant assumption",
"low-order model",
"second-order statistics",
"eddy simulation data",
"proper orthogonal decomposition",
"large-eddy simulation data",
"linear systems",
"stochastic inputs",
"Monte Carlo simulations",
"Galerkin model",
"time-invariant assumption",
"linear approximation",
"stationary flow",
"broadband turbulent",
"model uncertainty",
"orthogonal decomposition",
"white noise",
"nonlinear interactions",
"SPOD modes",
"Carlo simulations",
"original flow",
"coherence properties",
"fluid dynamics",
"Reynolds number",
"basis vectors",
"modeling paradigm",
"data residue",
"Mach number",
"surrogate data",
"simulation data",
"true state",
"expansion coefficient",
"least squares regression",
"compound states",
"turbulent jet",
"turbulent",
"squares regression",
"statistics",
"dynamics",
"approximation",
"model",
"optimality",
"coefficient",
"original data",
"operators",
"second level",
"flow",
"first level",
"uncertainty",
"simulations",
"noise",
"input",
"assumption",
"filter",
"number",
"vector",
"state",
"decomposition",
"mode",
"jet",
"sole input",
"properties",
"system",
"stability",
"offset",
"data",
"work",
"predictability",
"choice",
"regression",
"use",
"time",
"interaction",
"paradigm",
"closure",
"levels",
"residues"
],
"name": "A stochastic SPOD-Galerkin model for broadband turbulent flows",
"pagination": "759-782",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1140808391"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00162-021-00588-6"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00162-021-00588-6",
"https://app.dimensions.ai/details/publication/pub.1140808391"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:37",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_889.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00162-021-00588-6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00588-6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00588-6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00588-6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00588-6'
This table displays all metadata directly associated to this object as RDF triples.
158 TRIPLES
22 PREDICATES
110 URIs
99 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00162-021-00588-6 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0104 |
3 | ″ | schema:author | Nbb068cd441de45b1b73dec090dc95337 |
4 | ″ | schema:citation | sg:pub.10.1007/978-3-642-71435-1_13 |
5 | ″ | ″ | sg:pub.10.1007/bf01387235 |
6 | ″ | ″ | sg:pub.10.1007/s001620050131 |
7 | ″ | schema:datePublished | 2021-09-01 |
8 | ″ | schema:datePublishedReg | 2021-09-01 |
9 | ″ | schema:description | The use of spectral proper orthogonal decomposition (SPOD) to construct low-order models for broadband turbulent flows is explored. The choice of SPOD modes as basis vectors is motivated by their optimality and space-time coherence properties for statistically stationary flows. This work follows the modeling paradigm that complex nonlinear fluid dynamics can be approximated as stochastically forced linear systems. The proposed stochastic two-level SPOD-Galerkin model governs a compound state consisting of the modal expansion coefficients and forcing coefficients. In the first level, the modal expansion coefficients are advanced by the forced linearized Navier-Stokes operator under the linear time-invariant assumption. The second level governs the forcing coefficients, which compensate for the offset between the linear approximation and the true state. At this level, least squares regression is used to achieve closure by modeling nonlinear interactions between modes. The statistics of the remaining residue are used to construct a dewhitening filter that facilitates the use of white noise to drive the model. If the data residue is used as the sole input, the model accurately recovers the original flow trajectory for all times. If the residue is modeled as stochastic input, then the model generates surrogate data that accurately reproduces the second-order statistics and dynamics of the original data. The stochastic model uncertainty, predictability, and stability are quantified analytically and through Monte Carlo simulations. The model is demonstrated on large eddy simulation data of a turbulent jet at Mach number M=0.9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=0.9$$\end{document} and Reynolds number ReD≈106\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {Re}_D\approx 10^6$$\end{document}. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | true |
13 | ″ | schema:isPartOf | N3ca7c93a4279439b98d87ddc52b64b14 |
14 | ″ | ″ | N4ee4b02a593148e3bdd088476c1ebc6b |
15 | ″ | ″ | sg:journal.1052938 |
16 | ″ | schema:keywords | Carlo simulations |
17 | ″ | ″ | Galerkin model |
18 | ″ | ″ | Mach number |
19 | ″ | ″ | Monte Carlo simulations |
20 | ″ | ″ | Navier–Stokes operator |
21 | ″ | ″ | Reynolds number |
22 | ″ | ″ | SPOD modes |
23 | ″ | ″ | approximation |
24 | ″ | ″ | assumption |
25 | ″ | ″ | basis vectors |
26 | ″ | ″ | broadband turbulent |
27 | ″ | ″ | choice |
28 | ″ | ″ | closure |
29 | ″ | ″ | coefficient |
30 | ″ | ″ | coherence properties |
31 | ″ | ″ | compound states |
32 | ″ | ″ | data |
33 | ″ | ″ | data residue |
34 | ″ | ″ | decomposition |
35 | ″ | ″ | dynamics |
36 | ″ | ″ | eddy simulation data |
37 | ″ | ″ | expansion coefficient |
38 | ″ | ″ | filter |
39 | ″ | ″ | first level |
40 | ″ | ″ | flow |
41 | ″ | ″ | fluid dynamics |
42 | ″ | ″ | input |
43 | ″ | ″ | interaction |
44 | ″ | ″ | jet |
45 | ″ | ″ | large-eddy simulation data |
46 | ″ | ″ | least squares regression |
47 | ″ | ″ | levels |
48 | ″ | ″ | linear approximation |
49 | ″ | ″ | linear systems |
50 | ″ | ″ | linear time-invariant assumption |
51 | ″ | ″ | low-order model |
52 | ″ | ″ | modal expansion coefficients |
53 | ″ | ″ | mode |
54 | ″ | ″ | model |
55 | ″ | ″ | model uncertainty |
56 | ″ | ″ | modeling paradigm |
57 | ″ | ″ | noise |
58 | ″ | ″ | nonlinear fluid dynamics |
59 | ″ | ″ | nonlinear interactions |
60 | ″ | ″ | number |
61 | ″ | ″ | offset |
62 | ″ | ″ | operators |
63 | ″ | ″ | optimality |
64 | ″ | ″ | original data |
65 | ″ | ″ | original flow |
66 | ″ | ″ | orthogonal decomposition |
67 | ″ | ″ | paradigm |
68 | ″ | ″ | predictability |
69 | ″ | ″ | proper orthogonal decomposition |
70 | ″ | ″ | properties |
71 | ″ | ″ | regression |
72 | ″ | ″ | residues |
73 | ″ | ″ | second level |
74 | ″ | ″ | second-order statistics |
75 | ″ | ″ | simulation data |
76 | ″ | ″ | simulations |
77 | ″ | ″ | sole input |
78 | ″ | ″ | spectral proper orthogonal decomposition |
79 | ″ | ″ | squares regression |
80 | ″ | ″ | stability |
81 | ″ | ″ | state |
82 | ″ | ″ | stationary flow |
83 | ″ | ″ | statistics |
84 | ″ | ″ | stochastic inputs |
85 | ″ | ″ | stochastic model uncertainty |
86 | ″ | ″ | surrogate data |
87 | ″ | ″ | system |
88 | ″ | ″ | time |
89 | ″ | ″ | time-invariant assumption |
90 | ″ | ″ | true state |
91 | ″ | ″ | turbulent |
92 | ″ | ″ | turbulent jet |
93 | ″ | ″ | uncertainty |
94 | ″ | ″ | use |
95 | ″ | ″ | vector |
96 | ″ | ″ | white noise |
97 | ″ | ″ | work |
98 | ″ | schema:name | A stochastic SPOD-Galerkin model for broadband turbulent flows |
99 | ″ | schema:pagination | 759-782 |
100 | ″ | schema:productId | N4c41c0da52ee42d2baf1188ea633a117 |
101 | ″ | ″ | Nf3c8bf75b61d4694a2a372fcab3cd91f |
102 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1140808391 |
103 | ″ | ″ | https://doi.org/10.1007/s00162-021-00588-6 |
104 | ″ | schema:sdDatePublished | 2022-05-20T07:37 |
105 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
106 | ″ | schema:sdPublisher | Nba4a4a77f7f749e097abadb14ca400a1 |
107 | ″ | schema:url | https://doi.org/10.1007/s00162-021-00588-6 |
108 | ″ | sgo:license | sg:explorer/license/ |
109 | ″ | sgo:sdDataset | articles |
110 | ″ | rdf:type | schema:ScholarlyArticle |
111 | N3ca7c93a4279439b98d87ddc52b64b14 | schema:issueNumber | 6 |
112 | ″ | rdf:type | schema:PublicationIssue |
113 | N4c41c0da52ee42d2baf1188ea633a117 | schema:name | dimensions_id |
114 | ″ | schema:value | pub.1140808391 |
115 | ″ | rdf:type | schema:PropertyValue |
116 | N4ee4b02a593148e3bdd088476c1ebc6b | schema:volumeNumber | 35 |
117 | ″ | rdf:type | schema:PublicationVolume |
118 | N80872df85ca547e096714f05453c0eea | schema:affiliation | grid-institutes:grid.266100.3 |
119 | ″ | schema:familyName | Chu |
120 | ″ | schema:givenName | Tianyi |
121 | ″ | rdf:type | schema:Person |
122 | Nb3fa9d27a1924a50b37b03f2517d3288 | rdf:first | sg:person.012605660013.82 |
123 | ″ | rdf:rest | rdf:nil |
124 | Nba4a4a77f7f749e097abadb14ca400a1 | schema:name | Springer Nature - SN SciGraph project |
125 | ″ | rdf:type | schema:Organization |
126 | Nbb068cd441de45b1b73dec090dc95337 | rdf:first | N80872df85ca547e096714f05453c0eea |
127 | ″ | rdf:rest | Nb3fa9d27a1924a50b37b03f2517d3288 |
128 | Nf3c8bf75b61d4694a2a372fcab3cd91f | schema:name | doi |
129 | ″ | schema:value | 10.1007/s00162-021-00588-6 |
130 | ″ | rdf:type | schema:PropertyValue |
131 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
132 | ″ | schema:name | Mathematical Sciences |
133 | ″ | rdf:type | schema:DefinedTerm |
134 | anzsrc-for:0104 | schema:inDefinedTermSet | anzsrc-for: |
135 | ″ | schema:name | Statistics |
136 | ″ | rdf:type | schema:DefinedTerm |
137 | sg:journal.1052938 | schema:issn | 0935-4964 |
138 | ″ | ″ | 1432-2250 |
139 | ″ | schema:name | Theoretical and Computational Fluid Dynamics |
140 | ″ | schema:publisher | Springer Nature |
141 | ″ | rdf:type | schema:Periodical |
142 | sg:person.012605660013.82 | schema:affiliation | grid-institutes:grid.266100.3 |
143 | ″ | schema:familyName | Schmidt |
144 | ″ | schema:givenName | Oliver T. |
145 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012605660013.82 |
146 | ″ | rdf:type | schema:Person |
147 | sg:pub.10.1007/978-3-642-71435-1_13 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1050250175 |
148 | ″ | ″ | https://doi.org/10.1007/978-3-642-71435-1_13 |
149 | ″ | rdf:type | schema:CreativeWork |
150 | sg:pub.10.1007/bf01387235 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1045584174 |
151 | ″ | ″ | https://doi.org/10.1007/bf01387235 |
152 | ″ | rdf:type | schema:CreativeWork |
153 | sg:pub.10.1007/s001620050131 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1023300845 |
154 | ″ | ″ | https://doi.org/10.1007/s001620050131 |
155 | ″ | rdf:type | schema:CreativeWork |
156 | grid-institutes:grid.266100.3 | schema:alternateName | Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, 9500 Gilman Drive, 92093-0411, La Jolla, CA, USA |
157 | ″ | schema:name | Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, 9500 Gilman Drive, 92093-0411, La Jolla, CA, USA |
158 | ″ | rdf:type | schema:Organization |