Ontology type: schema:ScholarlyArticle
2021-08-25
AUTHORSLin Fu, Sanjeeb Bose, Parviz Moin
ABSTRACTAccurate prediction of aerothermal surface loading is of paramount importance for the design of high-speed flight vehicles. In this work, we consider the numerical solution of hypersonic flow over a double-finned geometry, representative of the inlet of an air-breathing flight vehicle, characterized by three-dimensional intersecting shock-wave/turbulent boundary layer interaction at Mach 8.3. High Reynolds numbers (ReL≈11.6×106\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re_L \approx 11.6 \times 10^6$$\end{document} based on free-stream conditions) and the presence of cold walls (Tw/T∘≈0.26\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_w/T_\circ \approx 0.26$$\end{document}) leading to large near-wall temperature gradients necessitate the use of wall-modeled large eddy simulation (WMLES) in order to make calculations computationally tractable. The comparison of the WMLES results with experimental measurements shows good agreement in the time-averaged surface heat flux and wall pressure distributions, and the WMLES predictions show reduced errors with respect to the experimental measurements than prior RANS calculations. The favorable comparisons are obtained using a standard LES wall model based on equilibrium boundary layer approximations despite the presence of numerous non-equilibrium conditions including three-dimensionality in the mean, shock/boundary layer interactions, and flow separation. We demonstrate that the use of semi-local eddy viscosity scaling (in lieu of the commonly used van Driest scaling) in the LES wall model is necessary to accurately predict the surface pressure loading and heat fluxes. More... »
PAGES345-368
http://scigraph.springernature.com/pub.10.1007/s00162-021-00587-7
DOIhttp://dx.doi.org/10.1007/s00162-021-00587-7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1140638131
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Interdisciplinary Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Center for Turbulence Research, Stanford University, 94305-3024, Stanford, CA, USA",
"id": "http://www.grid.ac/institutes/grid.168010.e",
"name": [
"Center for Turbulence Research, Stanford University, 94305-3024, Stanford, CA, USA"
],
"type": "Organization"
},
"familyName": "Fu",
"givenName": "Lin",
"id": "sg:person.011610623137.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011610623137.11"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cascade Technologies Inc., 94303, Palo Alto, CA, USA",
"id": "http://www.grid.ac/institutes/grid.455338.c",
"name": [
"Cascade Technologies Inc., 94303, Palo Alto, CA, USA"
],
"type": "Organization"
},
"familyName": "Bose",
"givenName": "Sanjeeb",
"id": "sg:person.015115674361.38",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015115674361.38"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Center for Turbulence Research, Stanford University, 94305-3024, Stanford, CA, USA",
"id": "http://www.grid.ac/institutes/grid.168010.e",
"name": [
"Center for Turbulence Research, Stanford University, 94305-3024, Stanford, CA, USA"
],
"type": "Organization"
},
"familyName": "Moin",
"givenName": "Parviz",
"id": "sg:person.014002056055.71",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014002056055.71"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00348-012-1363-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040503369",
"https://doi.org/10.1007/s00348-012-1363-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00162-013-0316-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003388745",
"https://doi.org/10.1007/s00162-013-0316-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01414746",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001015293",
"https://doi.org/10.1007/bf01414746"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00162-018-0471-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105196182",
"https://doi.org/10.1007/s00162-018-0471-3"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-08-25",
"datePublishedReg": "2021-08-25",
"description": "Accurate prediction of aerothermal surface loading is of paramount importance for the design of high-speed flight vehicles. In this work, we consider the numerical solution of hypersonic flow over a double-finned geometry, representative of the inlet of an air-breathing flight vehicle, characterized by three-dimensional intersecting shock-wave/turbulent boundary layer interaction at Mach 8.3. High Reynolds numbers (ReL\u224811.6\u00d7106\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$Re_L \\approx 11.6 \\times 10^6$$\\end{document} based on free-stream conditions) and the presence of cold walls (Tw/T\u2218\u22480.26\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$T_w/T_\\circ \\approx 0.26$$\\end{document}) leading to large near-wall temperature gradients necessitate the use of wall-modeled large eddy simulation (WMLES) in order to make calculations computationally tractable. The comparison of the WMLES results with experimental measurements shows good agreement in the time-averaged surface heat flux and wall pressure distributions, and the WMLES predictions show reduced errors with respect to the experimental measurements than prior RANS calculations. The favorable comparisons are obtained using a standard LES wall model based on equilibrium boundary layer approximations despite the presence of numerous non-equilibrium conditions including three-dimensionality in the mean, shock/boundary layer interactions, and flow separation. We demonstrate that the use of semi-local eddy viscosity scaling (in lieu of the commonly used van Driest scaling) in the LES wall model is necessary to accurately predict the surface pressure loading and heat fluxes.",
"genre": "article",
"id": "sg:pub.10.1007/s00162-021-00587-7",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1052938",
"issn": [
"0935-4964",
"1432-2250"
],
"name": "Theoretical and Computational Fluid Dynamics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "36"
}
],
"keywords": [
"wall-modeled large-eddy simulation",
"boundary layer interaction",
"LES wall model",
"flight vehicle",
"layer interaction",
"heat flux",
"shock/boundary layer interaction",
"high-speed flight vehicles",
"turbulent boundary layer interaction",
"near-wall temperature gradients",
"time-averaged surface heat flux",
"wall model",
"experimental measurements",
"wall pressure distribution",
"large eddy simulation",
"high Reynolds numbers",
"boundary layer approximation",
"surface pressure loading",
"surface heat flux",
"WMLES predictions",
"aerothermal characteristics",
"cold wall",
"eddy simulation",
"RANS calculations",
"Reynolds number",
"inlet flow",
"hypersonic flow",
"pressure loading",
"pressure distribution",
"layer approximation",
"temperature gradient",
"surface loading",
"non-equilibrium conditions",
"three-dimensionality",
"numerical solution",
"favorable comparison",
"accurate prediction",
"loading",
"good agreement",
"vehicles",
"flow",
"flux",
"inlet",
"prediction",
"measurements",
"simulations",
"calculations",
"viscosity scaling",
"paramount importance",
"design",
"geometry",
"wall",
"model",
"separation",
"gradient",
"solution",
"error",
"comparison",
"scaling",
"agreement",
"characteristics",
"conditions",
"work",
"order",
"distribution",
"use",
"approximation",
"interaction",
"respect",
"means",
"presence",
"number",
"importance",
"representatives"
],
"name": "Prediction of aerothermal characteristics of a generic hypersonic inlet flow",
"pagination": "345-368",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1140638131"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00162-021-00587-7"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00162-021-00587-7",
"https://app.dimensions.ai/details/publication/pub.1140638131"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:39",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_890.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00162-021-00587-7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00587-7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00587-7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00587-7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00587-7'
This table displays all metadata directly associated to this object as RDF triples.
165 TRIPLES
22 PREDICATES
103 URIs
91 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00162-021-00587-7 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0915 |
3 | ″ | schema:author | N92fd4fd6b3434a1daa9d14ce2bd20908 |
4 | ″ | schema:citation | sg:pub.10.1007/bf01414746 |
5 | ″ | ″ | sg:pub.10.1007/s00162-013-0316-z |
6 | ″ | ″ | sg:pub.10.1007/s00162-018-0471-3 |
7 | ″ | ″ | sg:pub.10.1007/s00348-012-1363-8 |
8 | ″ | schema:datePublished | 2021-08-25 |
9 | ″ | schema:datePublishedReg | 2021-08-25 |
10 | ″ | schema:description | Accurate prediction of aerothermal surface loading is of paramount importance for the design of high-speed flight vehicles. In this work, we consider the numerical solution of hypersonic flow over a double-finned geometry, representative of the inlet of an air-breathing flight vehicle, characterized by three-dimensional intersecting shock-wave/turbulent boundary layer interaction at Mach 8.3. High Reynolds numbers (ReL≈11.6×106\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re_L \approx 11.6 \times 10^6$$\end{document} based on free-stream conditions) and the presence of cold walls (Tw/T∘≈0.26\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_w/T_\circ \approx 0.26$$\end{document}) leading to large near-wall temperature gradients necessitate the use of wall-modeled large eddy simulation (WMLES) in order to make calculations computationally tractable. The comparison of the WMLES results with experimental measurements shows good agreement in the time-averaged surface heat flux and wall pressure distributions, and the WMLES predictions show reduced errors with respect to the experimental measurements than prior RANS calculations. The favorable comparisons are obtained using a standard LES wall model based on equilibrium boundary layer approximations despite the presence of numerous non-equilibrium conditions including three-dimensionality in the mean, shock/boundary layer interactions, and flow separation. We demonstrate that the use of semi-local eddy viscosity scaling (in lieu of the commonly used van Driest scaling) in the LES wall model is necessary to accurately predict the surface pressure loading and heat fluxes. |
11 | ″ | schema:genre | article |
12 | ″ | schema:inLanguage | en |
13 | ″ | schema:isAccessibleForFree | false |
14 | ″ | schema:isPartOf | N890cc528a48b4b73bf0f7ed8b04bdc43 |
15 | ″ | ″ | Ne5f367fa3b914615ab263db96e0f7a21 |
16 | ″ | ″ | sg:journal.1052938 |
17 | ″ | schema:keywords | LES wall model |
18 | ″ | ″ | RANS calculations |
19 | ″ | ″ | Reynolds number |
20 | ″ | ″ | WMLES predictions |
21 | ″ | ″ | accurate prediction |
22 | ″ | ″ | aerothermal characteristics |
23 | ″ | ″ | agreement |
24 | ″ | ″ | approximation |
25 | ″ | ″ | boundary layer approximation |
26 | ″ | ″ | boundary layer interaction |
27 | ″ | ″ | calculations |
28 | ″ | ″ | characteristics |
29 | ″ | ″ | cold wall |
30 | ″ | ″ | comparison |
31 | ″ | ″ | conditions |
32 | ″ | ″ | design |
33 | ″ | ″ | distribution |
34 | ″ | ″ | eddy simulation |
35 | ″ | ″ | error |
36 | ″ | ″ | experimental measurements |
37 | ″ | ″ | favorable comparison |
38 | ″ | ″ | flight vehicle |
39 | ″ | ″ | flow |
40 | ″ | ″ | flux |
41 | ″ | ″ | geometry |
42 | ″ | ″ | good agreement |
43 | ″ | ″ | gradient |
44 | ″ | ″ | heat flux |
45 | ″ | ″ | high Reynolds numbers |
46 | ″ | ″ | high-speed flight vehicles |
47 | ″ | ″ | hypersonic flow |
48 | ″ | ″ | importance |
49 | ″ | ″ | inlet |
50 | ″ | ″ | inlet flow |
51 | ″ | ″ | interaction |
52 | ″ | ″ | large eddy simulation |
53 | ″ | ″ | layer approximation |
54 | ″ | ″ | layer interaction |
55 | ″ | ″ | loading |
56 | ″ | ″ | means |
57 | ″ | ″ | measurements |
58 | ″ | ″ | model |
59 | ″ | ″ | near-wall temperature gradients |
60 | ″ | ″ | non-equilibrium conditions |
61 | ″ | ″ | number |
62 | ″ | ″ | numerical solution |
63 | ″ | ″ | order |
64 | ″ | ″ | paramount importance |
65 | ″ | ″ | prediction |
66 | ″ | ″ | presence |
67 | ″ | ″ | pressure distribution |
68 | ″ | ″ | pressure loading |
69 | ″ | ″ | representatives |
70 | ″ | ″ | respect |
71 | ″ | ″ | scaling |
72 | ″ | ″ | separation |
73 | ″ | ″ | shock/boundary layer interaction |
74 | ″ | ″ | simulations |
75 | ″ | ″ | solution |
76 | ″ | ″ | surface heat flux |
77 | ″ | ″ | surface loading |
78 | ″ | ″ | surface pressure loading |
79 | ″ | ″ | temperature gradient |
80 | ″ | ″ | three-dimensionality |
81 | ″ | ″ | time-averaged surface heat flux |
82 | ″ | ″ | turbulent boundary layer interaction |
83 | ″ | ″ | use |
84 | ″ | ″ | vehicles |
85 | ″ | ″ | viscosity scaling |
86 | ″ | ″ | wall |
87 | ″ | ″ | wall model |
88 | ″ | ″ | wall pressure distribution |
89 | ″ | ″ | wall-modeled large-eddy simulation |
90 | ″ | ″ | work |
91 | ″ | schema:name | Prediction of aerothermal characteristics of a generic hypersonic inlet flow |
92 | ″ | schema:pagination | 345-368 |
93 | ″ | schema:productId | N4d65f38d9d924c288d2a11d0ebdbed5a |
94 | ″ | ″ | N67a5dc702aef4ce79e8d95cd136cd729 |
95 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1140638131 |
96 | ″ | ″ | https://doi.org/10.1007/s00162-021-00587-7 |
97 | ″ | schema:sdDatePublished | 2022-05-20T07:39 |
98 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
99 | ″ | schema:sdPublisher | Na80be90f2cde4f64a5c421689fda6e3a |
100 | ″ | schema:url | https://doi.org/10.1007/s00162-021-00587-7 |
101 | ″ | sgo:license | sg:explorer/license/ |
102 | ″ | sgo:sdDataset | articles |
103 | ″ | rdf:type | schema:ScholarlyArticle |
104 | N4d65f38d9d924c288d2a11d0ebdbed5a | schema:name | doi |
105 | ″ | schema:value | 10.1007/s00162-021-00587-7 |
106 | ″ | rdf:type | schema:PropertyValue |
107 | N67a5dc702aef4ce79e8d95cd136cd729 | schema:name | dimensions_id |
108 | ″ | schema:value | pub.1140638131 |
109 | ″ | rdf:type | schema:PropertyValue |
110 | N890cc528a48b4b73bf0f7ed8b04bdc43 | schema:issueNumber | 2 |
111 | ″ | rdf:type | schema:PublicationIssue |
112 | N90c2cbc2355a42dab72dc1c980dbd82a | rdf:first | sg:person.015115674361.38 |
113 | ″ | rdf:rest | Nf4783bba08e84ebfb060b6527b6ffaf9 |
114 | N92fd4fd6b3434a1daa9d14ce2bd20908 | rdf:first | sg:person.011610623137.11 |
115 | ″ | rdf:rest | N90c2cbc2355a42dab72dc1c980dbd82a |
116 | Na80be90f2cde4f64a5c421689fda6e3a | schema:name | Springer Nature - SN SciGraph project |
117 | ″ | rdf:type | schema:Organization |
118 | Ne5f367fa3b914615ab263db96e0f7a21 | schema:volumeNumber | 36 |
119 | ″ | rdf:type | schema:PublicationVolume |
120 | Nf4783bba08e84ebfb060b6527b6ffaf9 | rdf:first | sg:person.014002056055.71 |
121 | ″ | rdf:rest | rdf:nil |
122 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
123 | ″ | schema:name | Engineering |
124 | ″ | rdf:type | schema:DefinedTerm |
125 | anzsrc-for:0915 | schema:inDefinedTermSet | anzsrc-for: |
126 | ″ | schema:name | Interdisciplinary Engineering |
127 | ″ | rdf:type | schema:DefinedTerm |
128 | sg:journal.1052938 | schema:issn | 0935-4964 |
129 | ″ | ″ | 1432-2250 |
130 | ″ | schema:name | Theoretical and Computational Fluid Dynamics |
131 | ″ | schema:publisher | Springer Nature |
132 | ″ | rdf:type | schema:Periodical |
133 | sg:person.011610623137.11 | schema:affiliation | grid-institutes:grid.168010.e |
134 | ″ | schema:familyName | Fu |
135 | ″ | schema:givenName | Lin |
136 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011610623137.11 |
137 | ″ | rdf:type | schema:Person |
138 | sg:person.014002056055.71 | schema:affiliation | grid-institutes:grid.168010.e |
139 | ″ | schema:familyName | Moin |
140 | ″ | schema:givenName | Parviz |
141 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014002056055.71 |
142 | ″ | rdf:type | schema:Person |
143 | sg:person.015115674361.38 | schema:affiliation | grid-institutes:grid.455338.c |
144 | ″ | schema:familyName | Bose |
145 | ″ | schema:givenName | Sanjeeb |
146 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015115674361.38 |
147 | ″ | rdf:type | schema:Person |
148 | sg:pub.10.1007/bf01414746 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1001015293 |
149 | ″ | ″ | https://doi.org/10.1007/bf01414746 |
150 | ″ | rdf:type | schema:CreativeWork |
151 | sg:pub.10.1007/s00162-013-0316-z | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1003388745 |
152 | ″ | ″ | https://doi.org/10.1007/s00162-013-0316-z |
153 | ″ | rdf:type | schema:CreativeWork |
154 | sg:pub.10.1007/s00162-018-0471-3 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1105196182 |
155 | ″ | ″ | https://doi.org/10.1007/s00162-018-0471-3 |
156 | ″ | rdf:type | schema:CreativeWork |
157 | sg:pub.10.1007/s00348-012-1363-8 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040503369 |
158 | ″ | ″ | https://doi.org/10.1007/s00348-012-1363-8 |
159 | ″ | rdf:type | schema:CreativeWork |
160 | grid-institutes:grid.168010.e | schema:alternateName | Center for Turbulence Research, Stanford University, 94305-3024, Stanford, CA, USA |
161 | ″ | schema:name | Center for Turbulence Research, Stanford University, 94305-3024, Stanford, CA, USA |
162 | ″ | rdf:type | schema:Organization |
163 | grid-institutes:grid.455338.c | schema:alternateName | Cascade Technologies Inc., 94303, Palo Alto, CA, USA |
164 | ″ | schema:name | Cascade Technologies Inc., 94303, Palo Alto, CA, USA |
165 | ″ | rdf:type | schema:Organization |