Prediction of aerothermal characteristics of a generic hypersonic inlet flow View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-08-25

AUTHORS

Lin Fu, Sanjeeb Bose, Parviz Moin

ABSTRACT

Accurate prediction of aerothermal surface loading is of paramount importance for the design of high-speed flight vehicles. In this work, we consider the numerical solution of hypersonic flow over a double-finned geometry, representative of the inlet of an air-breathing flight vehicle, characterized by three-dimensional intersecting shock-wave/turbulent boundary layer interaction at Mach 8.3. High Reynolds numbers (ReL≈11.6×106\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re_L \approx 11.6 \times 10^6$$\end{document} based on free-stream conditions) and the presence of cold walls (Tw/T∘≈0.26\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_w/T_\circ \approx 0.26$$\end{document}) leading to large near-wall temperature gradients necessitate the use of wall-modeled large eddy simulation (WMLES) in order to make calculations computationally tractable. The comparison of the WMLES results with experimental measurements shows good agreement in the time-averaged surface heat flux and wall pressure distributions, and the WMLES predictions show reduced errors with respect to the experimental measurements than prior RANS calculations. The favorable comparisons are obtained using a standard LES wall model based on equilibrium boundary layer approximations despite the presence of numerous non-equilibrium conditions including three-dimensionality in the mean, shock/boundary layer interactions, and flow separation. We demonstrate that the use of semi-local eddy viscosity scaling (in lieu of the commonly used van Driest scaling) in the LES wall model is necessary to accurately predict the surface pressure loading and heat fluxes. More... »

PAGES

345-368

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00162-021-00587-7

DOI

http://dx.doi.org/10.1007/s00162-021-00587-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1140638131


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Turbulence Research, Stanford University, 94305-3024, Stanford, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Center for Turbulence Research, Stanford University, 94305-3024, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fu", 
        "givenName": "Lin", 
        "id": "sg:person.011610623137.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011610623137.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cascade Technologies Inc., 94303, Palo Alto, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.455338.c", 
          "name": [
            "Cascade Technologies Inc., 94303, Palo Alto, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bose", 
        "givenName": "Sanjeeb", 
        "id": "sg:person.015115674361.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015115674361.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Turbulence Research, Stanford University, 94305-3024, Stanford, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Center for Turbulence Research, Stanford University, 94305-3024, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moin", 
        "givenName": "Parviz", 
        "id": "sg:person.014002056055.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014002056055.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00348-012-1363-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040503369", 
          "https://doi.org/10.1007/s00348-012-1363-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00162-013-0316-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003388745", 
          "https://doi.org/10.1007/s00162-013-0316-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01414746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001015293", 
          "https://doi.org/10.1007/bf01414746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00162-018-0471-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105196182", 
          "https://doi.org/10.1007/s00162-018-0471-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-08-25", 
    "datePublishedReg": "2021-08-25", 
    "description": "Accurate prediction of aerothermal surface loading is of paramount importance for the design of high-speed flight vehicles. In this work, we consider the numerical solution of hypersonic flow over a double-finned geometry, representative of the inlet of an air-breathing flight vehicle, characterized by three-dimensional intersecting shock-wave/turbulent boundary layer interaction at Mach 8.3. High Reynolds numbers (ReL\u224811.6\u00d7106\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$Re_L \\approx 11.6 \\times 10^6$$\\end{document} based on free-stream conditions) and the presence of cold walls (Tw/T\u2218\u22480.26\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$T_w/T_\\circ \\approx 0.26$$\\end{document}) leading to large near-wall temperature gradients necessitate the use of wall-modeled large eddy simulation (WMLES) in order to make calculations computationally tractable. The comparison of the WMLES results with experimental measurements shows good agreement in the time-averaged surface heat flux and wall pressure distributions, and the WMLES predictions show reduced errors with respect to the experimental measurements than prior RANS calculations. The favorable comparisons are obtained using a standard LES wall model based on equilibrium boundary layer approximations despite the presence of numerous non-equilibrium conditions including three-dimensionality in the mean, shock/boundary layer interactions, and flow separation. We demonstrate that the use of semi-local eddy viscosity scaling (in lieu of the commonly used van Driest scaling) in the LES wall model is necessary to accurately predict the surface pressure loading and heat fluxes.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00162-021-00587-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052938", 
        "issn": [
          "0935-4964", 
          "1432-2250"
        ], 
        "name": "Theoretical and Computational Fluid Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "keywords": [
      "wall-modeled large-eddy simulation", 
      "boundary layer interaction", 
      "LES wall model", 
      "flight vehicle", 
      "layer interaction", 
      "heat flux", 
      "shock/boundary layer interaction", 
      "high-speed flight vehicles", 
      "turbulent boundary layer interaction", 
      "near-wall temperature gradients", 
      "time-averaged surface heat flux", 
      "wall model", 
      "experimental measurements", 
      "wall pressure distribution", 
      "large eddy simulation", 
      "high Reynolds numbers", 
      "boundary layer approximation", 
      "surface pressure loading", 
      "surface heat flux", 
      "WMLES predictions", 
      "aerothermal characteristics", 
      "cold wall", 
      "eddy simulation", 
      "RANS calculations", 
      "Reynolds number", 
      "inlet flow", 
      "hypersonic flow", 
      "pressure loading", 
      "pressure distribution", 
      "layer approximation", 
      "temperature gradient", 
      "surface loading", 
      "non-equilibrium conditions", 
      "three-dimensionality", 
      "numerical solution", 
      "favorable comparison", 
      "accurate prediction", 
      "loading", 
      "good agreement", 
      "vehicles", 
      "flow", 
      "flux", 
      "inlet", 
      "prediction", 
      "measurements", 
      "simulations", 
      "calculations", 
      "viscosity scaling", 
      "paramount importance", 
      "design", 
      "geometry", 
      "wall", 
      "model", 
      "separation", 
      "gradient", 
      "solution", 
      "error", 
      "comparison", 
      "scaling", 
      "agreement", 
      "characteristics", 
      "conditions", 
      "work", 
      "order", 
      "distribution", 
      "use", 
      "approximation", 
      "interaction", 
      "respect", 
      "means", 
      "presence", 
      "number", 
      "importance", 
      "representatives"
    ], 
    "name": "Prediction of aerothermal characteristics of a generic hypersonic inlet flow", 
    "pagination": "345-368", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1140638131"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00162-021-00587-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00162-021-00587-7", 
      "https://app.dimensions.ai/details/publication/pub.1140638131"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_890.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00162-021-00587-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00587-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00587-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00587-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00587-7'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      22 PREDICATES      103 URIs      91 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00162-021-00587-7 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N92fd4fd6b3434a1daa9d14ce2bd20908
4 schema:citation sg:pub.10.1007/bf01414746
5 sg:pub.10.1007/s00162-013-0316-z
6 sg:pub.10.1007/s00162-018-0471-3
7 sg:pub.10.1007/s00348-012-1363-8
8 schema:datePublished 2021-08-25
9 schema:datePublishedReg 2021-08-25
10 schema:description Accurate prediction of aerothermal surface loading is of paramount importance for the design of high-speed flight vehicles. In this work, we consider the numerical solution of hypersonic flow over a double-finned geometry, representative of the inlet of an air-breathing flight vehicle, characterized by three-dimensional intersecting shock-wave/turbulent boundary layer interaction at Mach 8.3. High Reynolds numbers (ReL≈11.6×106\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re_L \approx 11.6 \times 10^6$$\end{document} based on free-stream conditions) and the presence of cold walls (Tw/T∘≈0.26\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_w/T_\circ \approx 0.26$$\end{document}) leading to large near-wall temperature gradients necessitate the use of wall-modeled large eddy simulation (WMLES) in order to make calculations computationally tractable. The comparison of the WMLES results with experimental measurements shows good agreement in the time-averaged surface heat flux and wall pressure distributions, and the WMLES predictions show reduced errors with respect to the experimental measurements than prior RANS calculations. The favorable comparisons are obtained using a standard LES wall model based on equilibrium boundary layer approximations despite the presence of numerous non-equilibrium conditions including three-dimensionality in the mean, shock/boundary layer interactions, and flow separation. We demonstrate that the use of semi-local eddy viscosity scaling (in lieu of the commonly used van Driest scaling) in the LES wall model is necessary to accurately predict the surface pressure loading and heat fluxes.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N890cc528a48b4b73bf0f7ed8b04bdc43
15 Ne5f367fa3b914615ab263db96e0f7a21
16 sg:journal.1052938
17 schema:keywords LES wall model
18 RANS calculations
19 Reynolds number
20 WMLES predictions
21 accurate prediction
22 aerothermal characteristics
23 agreement
24 approximation
25 boundary layer approximation
26 boundary layer interaction
27 calculations
28 characteristics
29 cold wall
30 comparison
31 conditions
32 design
33 distribution
34 eddy simulation
35 error
36 experimental measurements
37 favorable comparison
38 flight vehicle
39 flow
40 flux
41 geometry
42 good agreement
43 gradient
44 heat flux
45 high Reynolds numbers
46 high-speed flight vehicles
47 hypersonic flow
48 importance
49 inlet
50 inlet flow
51 interaction
52 large eddy simulation
53 layer approximation
54 layer interaction
55 loading
56 means
57 measurements
58 model
59 near-wall temperature gradients
60 non-equilibrium conditions
61 number
62 numerical solution
63 order
64 paramount importance
65 prediction
66 presence
67 pressure distribution
68 pressure loading
69 representatives
70 respect
71 scaling
72 separation
73 shock/boundary layer interaction
74 simulations
75 solution
76 surface heat flux
77 surface loading
78 surface pressure loading
79 temperature gradient
80 three-dimensionality
81 time-averaged surface heat flux
82 turbulent boundary layer interaction
83 use
84 vehicles
85 viscosity scaling
86 wall
87 wall model
88 wall pressure distribution
89 wall-modeled large-eddy simulation
90 work
91 schema:name Prediction of aerothermal characteristics of a generic hypersonic inlet flow
92 schema:pagination 345-368
93 schema:productId N4d65f38d9d924c288d2a11d0ebdbed5a
94 N67a5dc702aef4ce79e8d95cd136cd729
95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140638131
96 https://doi.org/10.1007/s00162-021-00587-7
97 schema:sdDatePublished 2022-05-20T07:39
98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
99 schema:sdPublisher Na80be90f2cde4f64a5c421689fda6e3a
100 schema:url https://doi.org/10.1007/s00162-021-00587-7
101 sgo:license sg:explorer/license/
102 sgo:sdDataset articles
103 rdf:type schema:ScholarlyArticle
104 N4d65f38d9d924c288d2a11d0ebdbed5a schema:name doi
105 schema:value 10.1007/s00162-021-00587-7
106 rdf:type schema:PropertyValue
107 N67a5dc702aef4ce79e8d95cd136cd729 schema:name dimensions_id
108 schema:value pub.1140638131
109 rdf:type schema:PropertyValue
110 N890cc528a48b4b73bf0f7ed8b04bdc43 schema:issueNumber 2
111 rdf:type schema:PublicationIssue
112 N90c2cbc2355a42dab72dc1c980dbd82a rdf:first sg:person.015115674361.38
113 rdf:rest Nf4783bba08e84ebfb060b6527b6ffaf9
114 N92fd4fd6b3434a1daa9d14ce2bd20908 rdf:first sg:person.011610623137.11
115 rdf:rest N90c2cbc2355a42dab72dc1c980dbd82a
116 Na80be90f2cde4f64a5c421689fda6e3a schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 Ne5f367fa3b914615ab263db96e0f7a21 schema:volumeNumber 36
119 rdf:type schema:PublicationVolume
120 Nf4783bba08e84ebfb060b6527b6ffaf9 rdf:first sg:person.014002056055.71
121 rdf:rest rdf:nil
122 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
123 schema:name Engineering
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
126 schema:name Interdisciplinary Engineering
127 rdf:type schema:DefinedTerm
128 sg:journal.1052938 schema:issn 0935-4964
129 1432-2250
130 schema:name Theoretical and Computational Fluid Dynamics
131 schema:publisher Springer Nature
132 rdf:type schema:Periodical
133 sg:person.011610623137.11 schema:affiliation grid-institutes:grid.168010.e
134 schema:familyName Fu
135 schema:givenName Lin
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011610623137.11
137 rdf:type schema:Person
138 sg:person.014002056055.71 schema:affiliation grid-institutes:grid.168010.e
139 schema:familyName Moin
140 schema:givenName Parviz
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014002056055.71
142 rdf:type schema:Person
143 sg:person.015115674361.38 schema:affiliation grid-institutes:grid.455338.c
144 schema:familyName Bose
145 schema:givenName Sanjeeb
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015115674361.38
147 rdf:type schema:Person
148 sg:pub.10.1007/bf01414746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001015293
149 https://doi.org/10.1007/bf01414746
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s00162-013-0316-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1003388745
152 https://doi.org/10.1007/s00162-013-0316-z
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s00162-018-0471-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105196182
155 https://doi.org/10.1007/s00162-018-0471-3
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s00348-012-1363-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040503369
158 https://doi.org/10.1007/s00348-012-1363-8
159 rdf:type schema:CreativeWork
160 grid-institutes:grid.168010.e schema:alternateName Center for Turbulence Research, Stanford University, 94305-3024, Stanford, CA, USA
161 schema:name Center for Turbulence Research, Stanford University, 94305-3024, Stanford, CA, USA
162 rdf:type schema:Organization
163 grid-institutes:grid.455338.c schema:alternateName Cascade Technologies Inc., 94303, Palo Alto, CA, USA
164 schema:name Cascade Technologies Inc., 94303, Palo Alto, CA, USA
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...