Model-based multi-sensor fusion for reconstructing wall-bounded turbulence View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-08-22

AUTHORS

Mengying Wang, C. Vamsi Krishna, Mitul Luhar, Maziar S. Hemati

ABSTRACT

Wall-bounded turbulent flows can be challenging to measure within experiments due to the breadth of spatial and temporal scales inherent in such flows. Instrumentation capable of obtaining time-resolved data (e.g., hot-wire anemometers) tends to be restricted to spatially localized point measurements; likewise, instrumentation capable of achieving spatially resolved field measurements (e.g., particle image velocimetry) tends to lack the sampling rates needed to attain time resolution in many such flows. In this study, we propose to fuse measurements from multi-rate and multi-fidelity sensors with predictions from a physics-based model to reconstruct the spatiotemporal evolution of a wall-bounded turbulent flow. A “fast” filter is formulated to assimilate high-rate point measurements with estimates from a linear model derived from the Navier–Stokes equations. Additionally, a “slow” filter is used to update the reconstruction every time a new field measurement becomes available. By marching through the data both forward and backward in time, we are able to reconstruct the turbulent flow with greater spatiotemporal resolution than either sensing modality alone. We demonstrate the approach using direct numerical simulations of a turbulent channel flow from the Johns Hopkins Turbulence Database. A statistical analysis of the model-based multi-sensor fusion approach is also conducted. More... »

PAGES

683-707

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00162-021-00586-8

DOI

http://dx.doi.org/10.1007/s00162-021-00586-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1140580489


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Aerospace Engineering and Mechanics, University of Minnesota, 55455, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Aerospace Engineering and Mechanics, University of Minnesota, 55455, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Mengying", 
        "id": "sg:person.015476354434.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015476354434.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aerospace and Mechanical Engineering, University of Southern California, 90089, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Aerospace and Mechanical Engineering, University of Southern California, 90089, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krishna", 
        "givenName": "C. Vamsi", 
        "id": "sg:person.011373054235.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011373054235.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aerospace and Mechanical Engineering, University of Southern California, 90089, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Aerospace and Mechanical Engineering, University of Southern California, 90089, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luhar", 
        "givenName": "Mitul", 
        "id": "sg:person.013216527251.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013216527251.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aerospace Engineering and Mechanics, University of Minnesota, 55455, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Aerospace Engineering and Mechanics, University of Minnesota, 55455, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hemati", 
        "givenName": "Maziar S.", 
        "id": "sg:person.012706717322.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012706717322.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00348-012-1429-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034309733", 
          "https://doi.org/10.1007/s00348-012-1429-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01874409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020994422", 
          "https://doi.org/10.1007/bf01874409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-6858-4_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030969357", 
          "https://doi.org/10.1007/978-1-4020-6858-4_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-020-03057-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1131598137", 
          "https://doi.org/10.1007/s00348-020-03057-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-68852-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103152345", 
          "https://doi.org/10.1007/978-3-319-68852-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-010-0821-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049097901", 
          "https://doi.org/10.1007/s00348-010-0821-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00849106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014320722", 
          "https://doi.org/10.1007/bf00849106"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-08-22", 
    "datePublishedReg": "2021-08-22", 
    "description": "Wall-bounded turbulent flows can be challenging to measure within experiments due to the breadth of spatial and temporal scales inherent in such flows. Instrumentation capable of obtaining time-resolved data (e.g., hot-wire anemometers) tends to be restricted to spatially localized point measurements; likewise, instrumentation capable of achieving spatially resolved field measurements (e.g., particle image velocimetry) tends to lack the sampling rates needed to attain time resolution in many such flows. In this study, we propose to fuse measurements from multi-rate and multi-fidelity sensors with predictions from a physics-based model to reconstruct the spatiotemporal evolution of a wall-bounded turbulent flow. A \u201cfast\u201d filter is formulated to assimilate high-rate point measurements with estimates from a linear model derived from the Navier\u2013Stokes equations. Additionally, a \u201cslow\u201d filter is used to update the reconstruction every time a new field measurement becomes available. By marching through the data both forward and backward in time, we are able to reconstruct the turbulent flow with greater spatiotemporal resolution than either sensing modality alone. We demonstrate the approach using direct numerical simulations of a turbulent channel flow from the Johns Hopkins Turbulence Database. A statistical analysis of the model-based multi-sensor fusion approach is also conducted.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00162-021-00586-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052938", 
        "issn": [
          "0935-4964", 
          "1432-2250"
        ], 
        "name": "Theoretical and Computational Fluid Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "keywords": [
      "turbulent flow", 
      "wall-bounded turbulent flows", 
      "such flows", 
      "multi-sensor fusion approach", 
      "turbulent channel flow", 
      "Johns Hopkins Turbulence Databases", 
      "wall-bounded turbulence", 
      "field measurements", 
      "direct numerical simulations", 
      "point measurements", 
      "multi-sensor fusion", 
      "physics-based model", 
      "Navier-Stokes equations", 
      "channel flow", 
      "greater spatiotemporal resolution", 
      "numerical simulations", 
      "new field measurements", 
      "sampling rate", 
      "flow", 
      "time-resolved data", 
      "fusion approach", 
      "filter", 
      "time resolution", 
      "measurements", 
      "spatiotemporal resolution", 
      "spatiotemporal evolution", 
      "turbulence", 
      "sensors", 
      "instrumentation", 
      "simulations", 
      "resolution", 
      "temporal scales", 
      "wall", 
      "model", 
      "equations", 
      "prediction", 
      "linear model", 
      "time", 
      "approach", 
      "experiments", 
      "evolution", 
      "rate", 
      "reconstruction", 
      "scale", 
      "data", 
      "analysis", 
      "fusion", 
      "estimates", 
      "statistical analysis", 
      "study", 
      "database", 
      "breadth", 
      "modalities"
    ], 
    "name": "Model-based multi-sensor fusion for reconstructing wall-bounded turbulence", 
    "pagination": "683-707", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1140580489"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00162-021-00586-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00162-021-00586-8", 
      "https://app.dimensions.ai/details/publication/pub.1140580489"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_895.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00162-021-00586-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00586-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00586-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00586-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00586-8'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      22 PREDICATES      85 URIs      70 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00162-021-00586-8 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nd096597453454931b32f858b2d7dc9ec
4 schema:citation sg:pub.10.1007/978-1-4020-6858-4_21
5 sg:pub.10.1007/978-3-319-68852-7
6 sg:pub.10.1007/bf00849106
7 sg:pub.10.1007/bf01874409
8 sg:pub.10.1007/s00348-010-0821-4
9 sg:pub.10.1007/s00348-012-1429-7
10 sg:pub.10.1007/s00348-020-03057-8
11 schema:datePublished 2021-08-22
12 schema:datePublishedReg 2021-08-22
13 schema:description Wall-bounded turbulent flows can be challenging to measure within experiments due to the breadth of spatial and temporal scales inherent in such flows. Instrumentation capable of obtaining time-resolved data (e.g., hot-wire anemometers) tends to be restricted to spatially localized point measurements; likewise, instrumentation capable of achieving spatially resolved field measurements (e.g., particle image velocimetry) tends to lack the sampling rates needed to attain time resolution in many such flows. In this study, we propose to fuse measurements from multi-rate and multi-fidelity sensors with predictions from a physics-based model to reconstruct the spatiotemporal evolution of a wall-bounded turbulent flow. A “fast” filter is formulated to assimilate high-rate point measurements with estimates from a linear model derived from the Navier–Stokes equations. Additionally, a “slow” filter is used to update the reconstruction every time a new field measurement becomes available. By marching through the data both forward and backward in time, we are able to reconstruct the turbulent flow with greater spatiotemporal resolution than either sensing modality alone. We demonstrate the approach using direct numerical simulations of a turbulent channel flow from the Johns Hopkins Turbulence Database. A statistical analysis of the model-based multi-sensor fusion approach is also conducted.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf Ncf2fde15d4f94cc4899ea7f9f1f3daa7
18 Ne8440151cc2d41da907d07f5cf8c2fd9
19 sg:journal.1052938
20 schema:keywords Johns Hopkins Turbulence Databases
21 Navier-Stokes equations
22 analysis
23 approach
24 breadth
25 channel flow
26 data
27 database
28 direct numerical simulations
29 equations
30 estimates
31 evolution
32 experiments
33 field measurements
34 filter
35 flow
36 fusion
37 fusion approach
38 greater spatiotemporal resolution
39 instrumentation
40 linear model
41 measurements
42 modalities
43 model
44 multi-sensor fusion
45 multi-sensor fusion approach
46 new field measurements
47 numerical simulations
48 physics-based model
49 point measurements
50 prediction
51 rate
52 reconstruction
53 resolution
54 sampling rate
55 scale
56 sensors
57 simulations
58 spatiotemporal evolution
59 spatiotemporal resolution
60 statistical analysis
61 study
62 such flows
63 temporal scales
64 time
65 time resolution
66 time-resolved data
67 turbulence
68 turbulent channel flow
69 turbulent flow
70 wall
71 wall-bounded turbulence
72 wall-bounded turbulent flows
73 schema:name Model-based multi-sensor fusion for reconstructing wall-bounded turbulence
74 schema:pagination 683-707
75 schema:productId N043199e66d85447aa2c1ff26f3d5eb7c
76 N101fac701093431dbe205d4179aa4cd5
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140580489
78 https://doi.org/10.1007/s00162-021-00586-8
79 schema:sdDatePublished 2022-05-20T07:38
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher N6c6b5ecfef2244f1bd0e28ca9a82952b
82 schema:url https://doi.org/10.1007/s00162-021-00586-8
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N043199e66d85447aa2c1ff26f3d5eb7c schema:name dimensions_id
87 schema:value pub.1140580489
88 rdf:type schema:PropertyValue
89 N101fac701093431dbe205d4179aa4cd5 schema:name doi
90 schema:value 10.1007/s00162-021-00586-8
91 rdf:type schema:PropertyValue
92 N5ad37158604740698ad7b34901dba1a7 rdf:first sg:person.012706717322.17
93 rdf:rest rdf:nil
94 N6c6b5ecfef2244f1bd0e28ca9a82952b schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 Nad0a3b137a864cbbac81fe05e132836f rdf:first sg:person.011373054235.99
97 rdf:rest Nb5dc28088d264e13bd5b6deb23b52ea7
98 Nb5dc28088d264e13bd5b6deb23b52ea7 rdf:first sg:person.013216527251.03
99 rdf:rest N5ad37158604740698ad7b34901dba1a7
100 Ncf2fde15d4f94cc4899ea7f9f1f3daa7 schema:volumeNumber 35
101 rdf:type schema:PublicationVolume
102 Nd096597453454931b32f858b2d7dc9ec rdf:first sg:person.015476354434.07
103 rdf:rest Nad0a3b137a864cbbac81fe05e132836f
104 Ne8440151cc2d41da907d07f5cf8c2fd9 schema:issueNumber 5
105 rdf:type schema:PublicationIssue
106 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
107 schema:name Engineering
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
110 schema:name Interdisciplinary Engineering
111 rdf:type schema:DefinedTerm
112 sg:journal.1052938 schema:issn 0935-4964
113 1432-2250
114 schema:name Theoretical and Computational Fluid Dynamics
115 schema:publisher Springer Nature
116 rdf:type schema:Periodical
117 sg:person.011373054235.99 schema:affiliation grid-institutes:grid.42505.36
118 schema:familyName Krishna
119 schema:givenName C. Vamsi
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011373054235.99
121 rdf:type schema:Person
122 sg:person.012706717322.17 schema:affiliation grid-institutes:grid.17635.36
123 schema:familyName Hemati
124 schema:givenName Maziar S.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012706717322.17
126 rdf:type schema:Person
127 sg:person.013216527251.03 schema:affiliation grid-institutes:grid.42505.36
128 schema:familyName Luhar
129 schema:givenName Mitul
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013216527251.03
131 rdf:type schema:Person
132 sg:person.015476354434.07 schema:affiliation grid-institutes:grid.17635.36
133 schema:familyName Wang
134 schema:givenName Mengying
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015476354434.07
136 rdf:type schema:Person
137 sg:pub.10.1007/978-1-4020-6858-4_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030969357
138 https://doi.org/10.1007/978-1-4020-6858-4_21
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/978-3-319-68852-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103152345
141 https://doi.org/10.1007/978-3-319-68852-7
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/bf00849106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014320722
144 https://doi.org/10.1007/bf00849106
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/bf01874409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020994422
147 https://doi.org/10.1007/bf01874409
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s00348-010-0821-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049097901
150 https://doi.org/10.1007/s00348-010-0821-4
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s00348-012-1429-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034309733
153 https://doi.org/10.1007/s00348-012-1429-7
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s00348-020-03057-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131598137
156 https://doi.org/10.1007/s00348-020-03057-8
157 rdf:type schema:CreativeWork
158 grid-institutes:grid.17635.36 schema:alternateName Aerospace Engineering and Mechanics, University of Minnesota, 55455, Minneapolis, MN, USA
159 schema:name Aerospace Engineering and Mechanics, University of Minnesota, 55455, Minneapolis, MN, USA
160 rdf:type schema:Organization
161 grid-institutes:grid.42505.36 schema:alternateName Aerospace and Mechanical Engineering, University of Southern California, 90089, Los Angeles, CA, USA
162 schema:name Aerospace and Mechanical Engineering, University of Southern California, 90089, Los Angeles, CA, USA
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...