Subgrid-scale parametrization of unresolved scales in forced Burgers equation using generative adversarial networks (GAN) View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-11-15

AUTHORS

Jeric Alcala, Ilya Timofeyev

ABSTRACT

Stochastic subgrid-scale parametrizations aim to incorporate effects of unresolved processes in an effective model by sampling from a distribution usually described in terms of resolved modes. This is an active research area in fluid dynamics where processes evolve on a wide range of spatial and temporal scales. We propose a data-driven framework where resolved modes are defined as local spatial averages and deviations from these averages are the unresolved degrees of freedom. The proposed approach is applicable to a wide range of finite volume and finite difference numerical schemes commonly used to discretize many realistic problems in fluid dynamics. In this study, we evaluate the performance of conditional generative adversarial network (GAN) in parametrizing subgrid-scale effects in a finite difference discretization of stochastically forced Burgers equation. We train a Wasserstein GAN (WGAN) conditioned on the resolved variables to learn the distribution of the subgrid flux and, thus, represent the effect of unresolved scales. The resulting WGAN is then used in an effective model to reproduce the statistical features of resolved modes. We demonstrate that various stationary statistical quantities such as spectrum, moments and autocorrelation are well approximated by this effective model. More... »

PAGES

875-894

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00162-021-00581-z

DOI

http://dx.doi.org/10.1007/s00162-021-00581-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142578526


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines, Los Ba\u00f1os, Philippines", 
          "id": "http://www.grid.ac/institutes/grid.11176.30", 
          "name": [
            "Department of Mathematics, University of Houston, 77204, Houston, TX, USA", 
            "Institute of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines, Los Ba\u00f1os, Philippines"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alcala", 
        "givenName": "Jeric", 
        "id": "sg:person.010231065727.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010231065727.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of Houston, 77204, Houston, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.266436.3", 
          "name": [
            "Department of Mathematics, University of Houston, 77204, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Timofeyev", 
        "givenName": "Ilya", 
        "id": "sg:person.01052502010.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052502010.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4419-1002-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027117085", 
          "https://doi.org/10.1007/978-1-4419-1002-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11831-020-09437-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1127984202", 
          "https://doi.org/10.1007/s11831-020-09437-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00162-012-0270-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052576446", 
          "https://doi.org/10.1007/s00162-012-0270-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8629-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033197262", 
          "https://doi.org/10.1007/978-3-0348-8629-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-11-15", 
    "datePublishedReg": "2021-11-15", 
    "description": "Stochastic subgrid-scale parametrizations aim to incorporate effects of unresolved processes in an effective model by sampling from a distribution usually described in terms of resolved modes. This is an active research area in fluid dynamics where processes evolve on a wide range of spatial and temporal scales. We propose a data-driven framework where resolved modes are defined as local spatial averages and deviations from these averages are the unresolved degrees of freedom. The proposed approach is applicable to a wide range of finite volume and finite difference numerical schemes commonly used to discretize many realistic problems in fluid dynamics. In this study, we evaluate the performance of conditional generative adversarial network (GAN) in parametrizing subgrid-scale effects in a finite difference discretization of stochastically forced Burgers equation. We train a Wasserstein GAN (WGAN) conditioned on the resolved variables to learn the distribution of the subgrid flux and, thus, represent the effect of unresolved scales. The resulting WGAN is then used in an effective model to reproduce the statistical features of resolved modes. We demonstrate that various stationary statistical quantities such as spectrum, moments and autocorrelation are well approximated by this effective model.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00162-021-00581-z", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5545154", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1052938", 
        "issn": [
          "0935-4964", 
          "1432-2250"
        ], 
        "name": "Theoretical and Computational Fluid Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "keywords": [
      "subgrid-scale parametrizations", 
      "Burgers equation", 
      "unresolved scales", 
      "finite difference numerical scheme", 
      "finite difference discretization", 
      "local spatial averages", 
      "fluid dynamics", 
      "subgrid-scale effects", 
      "unresolved degrees", 
      "difference discretization", 
      "statistical quantities", 
      "numerical scheme", 
      "effective model", 
      "subgrid fluxes", 
      "finite volume", 
      "realistic problems", 
      "unresolved processes", 
      "spatial average", 
      "statistical features", 
      "data-driven framework", 
      "equations", 
      "parametrization", 
      "generative adversarial network", 
      "Wasserstein GAN", 
      "active research area", 
      "discretization", 
      "wide range", 
      "dynamics", 
      "Wasserstein generative adversarial network", 
      "model", 
      "adversarial network", 
      "scheme", 
      "distribution", 
      "network", 
      "research area", 
      "moment", 
      "autocorrelation", 
      "problem", 
      "mode", 
      "freedom", 
      "conditional generative adversarial network", 
      "variables", 
      "temporal scales", 
      "terms", 
      "flux", 
      "quantity", 
      "framework", 
      "range", 
      "process", 
      "approach", 
      "deviation", 
      "scale", 
      "performance", 
      "spectra", 
      "average", 
      "effect", 
      "features", 
      "degree", 
      "volume", 
      "area", 
      "study"
    ], 
    "name": "Subgrid-scale parametrization of unresolved scales in forced Burgers equation using generative adversarial networks (GAN)", 
    "pagination": "875-894", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142578526"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00162-021-00581-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00162-021-00581-z", 
      "https://app.dimensions.ai/details/publication/pub.1142578526"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_889.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00162-021-00581-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00581-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00581-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00581-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00581-z'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      22 PREDICATES      90 URIs      78 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00162-021-00581-z schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N0cbe734fe20a4e7c9d53a550c772c2f8
4 schema:citation sg:pub.10.1007/978-1-4419-1002-8
5 sg:pub.10.1007/978-3-0348-8629-1
6 sg:pub.10.1007/s00162-012-0270-1
7 sg:pub.10.1007/s11831-020-09437-x
8 schema:datePublished 2021-11-15
9 schema:datePublishedReg 2021-11-15
10 schema:description Stochastic subgrid-scale parametrizations aim to incorporate effects of unresolved processes in an effective model by sampling from a distribution usually described in terms of resolved modes. This is an active research area in fluid dynamics where processes evolve on a wide range of spatial and temporal scales. We propose a data-driven framework where resolved modes are defined as local spatial averages and deviations from these averages are the unresolved degrees of freedom. The proposed approach is applicable to a wide range of finite volume and finite difference numerical schemes commonly used to discretize many realistic problems in fluid dynamics. In this study, we evaluate the performance of conditional generative adversarial network (GAN) in parametrizing subgrid-scale effects in a finite difference discretization of stochastically forced Burgers equation. We train a Wasserstein GAN (WGAN) conditioned on the resolved variables to learn the distribution of the subgrid flux and, thus, represent the effect of unresolved scales. The resulting WGAN is then used in an effective model to reproduce the statistical features of resolved modes. We demonstrate that various stationary statistical quantities such as spectrum, moments and autocorrelation are well approximated by this effective model.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf N55753b4652f142289ad0858ae408f340
15 Naebe36b7d80f44c2a20ed720185520f6
16 sg:journal.1052938
17 schema:keywords Burgers equation
18 Wasserstein GAN
19 Wasserstein generative adversarial network
20 active research area
21 adversarial network
22 approach
23 area
24 autocorrelation
25 average
26 conditional generative adversarial network
27 data-driven framework
28 degree
29 deviation
30 difference discretization
31 discretization
32 distribution
33 dynamics
34 effect
35 effective model
36 equations
37 features
38 finite difference discretization
39 finite difference numerical scheme
40 finite volume
41 fluid dynamics
42 flux
43 framework
44 freedom
45 generative adversarial network
46 local spatial averages
47 mode
48 model
49 moment
50 network
51 numerical scheme
52 parametrization
53 performance
54 problem
55 process
56 quantity
57 range
58 realistic problems
59 research area
60 scale
61 scheme
62 spatial average
63 spectra
64 statistical features
65 statistical quantities
66 study
67 subgrid fluxes
68 subgrid-scale effects
69 subgrid-scale parametrizations
70 temporal scales
71 terms
72 unresolved degrees
73 unresolved processes
74 unresolved scales
75 variables
76 volume
77 wide range
78 schema:name Subgrid-scale parametrization of unresolved scales in forced Burgers equation using generative adversarial networks (GAN)
79 schema:pagination 875-894
80 schema:productId N13a58d326c6346afb11b6ad4f7504073
81 N4d81ec963d324e178ec5bf2e2c46a827
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142578526
83 https://doi.org/10.1007/s00162-021-00581-z
84 schema:sdDatePublished 2022-05-20T07:37
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N394dd455b3e7477d9bfc92d20f6eab41
87 schema:url https://doi.org/10.1007/s00162-021-00581-z
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N0cbe734fe20a4e7c9d53a550c772c2f8 rdf:first sg:person.010231065727.66
92 rdf:rest N7eb399a8076b4714b0b7c33b2a8d0879
93 N13a58d326c6346afb11b6ad4f7504073 schema:name doi
94 schema:value 10.1007/s00162-021-00581-z
95 rdf:type schema:PropertyValue
96 N394dd455b3e7477d9bfc92d20f6eab41 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N4d81ec963d324e178ec5bf2e2c46a827 schema:name dimensions_id
99 schema:value pub.1142578526
100 rdf:type schema:PropertyValue
101 N55753b4652f142289ad0858ae408f340 schema:issueNumber 6
102 rdf:type schema:PublicationIssue
103 N7eb399a8076b4714b0b7c33b2a8d0879 rdf:first sg:person.01052502010.08
104 rdf:rest rdf:nil
105 Naebe36b7d80f44c2a20ed720185520f6 schema:volumeNumber 35
106 rdf:type schema:PublicationVolume
107 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
108 schema:name Mathematical Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
111 schema:name Statistics
112 rdf:type schema:DefinedTerm
113 sg:grant.5545154 http://pending.schema.org/fundedItem sg:pub.10.1007/s00162-021-00581-z
114 rdf:type schema:MonetaryGrant
115 sg:journal.1052938 schema:issn 0935-4964
116 1432-2250
117 schema:name Theoretical and Computational Fluid Dynamics
118 schema:publisher Springer Nature
119 rdf:type schema:Periodical
120 sg:person.010231065727.66 schema:affiliation grid-institutes:grid.11176.30
121 schema:familyName Alcala
122 schema:givenName Jeric
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010231065727.66
124 rdf:type schema:Person
125 sg:person.01052502010.08 schema:affiliation grid-institutes:grid.266436.3
126 schema:familyName Timofeyev
127 schema:givenName Ilya
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052502010.08
129 rdf:type schema:Person
130 sg:pub.10.1007/978-1-4419-1002-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027117085
131 https://doi.org/10.1007/978-1-4419-1002-8
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/978-3-0348-8629-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033197262
134 https://doi.org/10.1007/978-3-0348-8629-1
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s00162-012-0270-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052576446
137 https://doi.org/10.1007/s00162-012-0270-1
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s11831-020-09437-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1127984202
140 https://doi.org/10.1007/s11831-020-09437-x
141 rdf:type schema:CreativeWork
142 grid-institutes:grid.11176.30 schema:alternateName Institute of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines, Los Baños, Philippines
143 schema:name Department of Mathematics, University of Houston, 77204, Houston, TX, USA
144 Institute of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines, Los Baños, Philippines
145 rdf:type schema:Organization
146 grid-institutes:grid.266436.3 schema:alternateName Department of Mathematics, University of Houston, 77204, Houston, TX, USA
147 schema:name Department of Mathematics, University of Houston, 77204, Houston, TX, USA
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...