# Evaluation of near-singular integrals with application to vortex sheet flow

Ontology type: schema:ScholarlyArticle

### Article Info

DATE

2021-07-13

AUTHORS ABSTRACT

This paper presents a method to evaluate the near-singular line integrals that solve elliptic boundary value problems in planar and axisymmetric geometries. The integrals are near-singular for target points not on, but near the boundary, and standard quadratures lose accuracy as the distance d to the boundary decreases. The method is based on Taylor series approximations of the integrands that capture the near-singular behaviour and can be integrated in closed form. It amounts to applying the trapezoid rule with meshsize h, and adding a correction for each of the basis functions in the Taylor series. The corrections are computed at a cost of O(nw)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n_w)$$\end{document} per target point, where typically, nw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_w$$\end{document}=10–40. Any desired order of accuracy can be achieved using the appropriate number of terms in the Taylor series expansions. Two explicit versions of order O(h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^2)$$\end{document} and O(h3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^3)$$\end{document} are listed, with errors that decrease as d→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\rightarrow 0$$\end{document}. The method is applied to compute planar potential flow past a plate and past two cylinders, as well as long-time vortex sheet separation in flow past an inclined plate. These flows illustrate the significant difficulties introduced by inaccurate evaluation of the near-singular integrals and their resolution by the proposed method. The corrected results converge at the analytically predicted rates. More... »

PAGES

581-608

### References to SciGraph publications

• 2020-04-10. An inviscid model of unsteady separated vortical flow for a moving plate in THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS
• 2017-11-06. Ubiquitous evaluation of layer potentials using Quadrature by Kernel-Independent Expansion in BIT NUMERICAL MATHEMATICS
• 2012-07-10. Simulating Vortex Wakes of Flapping Plates in NATURAL LOCOMOTION IN FLUIDS AND ON SURFACES
• 2007-07-21. An inviscid model for vortex shedding from a deforming body in THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS
• 1988-06. Quadrature methods for periodic singular and weakly singular Fredholm integral equations in JOURNAL OF SCIENTIFIC COMPUTING
• 2016-10-13. Error estimation for quadrature by expansion in layer potential evaluation in ADVANCES IN COMPUTATIONAL MATHEMATICS

### Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00162-021-00577-9

DOI

http://dx.doi.org/10.1007/s00162-021-00577-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1139663906

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics and Statistics, University of New Mexico, 87131, Albuquerque, NM, USA",
"id": "http://www.grid.ac/institutes/grid.266832.b",
"name": [
"Department of Mathematics and Statistics, University of New Mexico, 87131, Albuquerque, NM, USA"
],
"type": "Organization"
},
"familyName": "Nitsche",
"givenName": "Monika",
"id": "sg:person.01236602664.27",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236602664.27"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00162-020-00524-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1126583262",
"https://doi.org/10.1007/s00162-020-00524-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01061258",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006391170",
"https://doi.org/10.1007/bf01061258"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10543-017-0689-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092556459",
"https://doi.org/10.1007/s10543-017-0689-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4614-3997-4_21",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038486456",
"https://doi.org/10.1007/978-1-4614-3997-4_21"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10444-016-9484-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018360000",
"https://doi.org/10.1007/s10444-016-9484-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00162-007-0053-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020984069",
"https://doi.org/10.1007/s00162-007-0053-2"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-07-13",
"datePublishedReg": "2021-07-13",
"description": "This paper presents a method to evaluate the near-singular line integrals that solve elliptic boundary value problems in planar and axisymmetric geometries. The integrals are near-singular for target points not on, but near the boundary, and standard quadratures lose accuracy as the distance d to the boundary decreases. The method is based on Taylor series approximations of the integrands that capture the near-singular behaviour and can be integrated in closed form. It amounts to applying the trapezoid rule with meshsize h, and adding a correction for each of the basis functions in the Taylor series. The corrections are computed at a cost of O(nw)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$O(n_w)$$\\end{document} per target point, where typically, nw\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n_w$$\\end{document}=10\u201340. Any desired order of accuracy can be achieved using the appropriate number of terms in the Taylor series expansions. Two explicit versions of order O(h2)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$O(h^2)$$\\end{document} and O(h3)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$O(h^3)$$\\end{document} are listed, with errors that decrease as d\u21920\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$d\\rightarrow 0$$\\end{document}. The method is applied to compute planar potential flow past a plate and past two cylinders, as well as long-time vortex sheet separation in flow past an inclined plate. These flows illustrate the significant difficulties introduced by inaccurate evaluation of the near-singular integrals and their resolution by the proposed method. The corrected results converge at the analytically predicted rates.",
"genre": "article",
"id": "sg:pub.10.1007/s00162-021-00577-9",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1052938",
"issn": [
"0935-4964",
"1432-2250"
],
"name": "Theoretical and Computational Fluid Dynamics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "5",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
}
],
"keywords": [
"elliptic boundary value problems",
"boundary value problem",
"Taylor series approximation",
"near-singular behaviors",
"order of accuracy",
"Taylor series expansion",
"near-singular integrals",
"value problem",
"singular integrals",
"line integrals",
"integrals",
"axisymmetric geometry",
"target point",
"series approximation",
"trapezoid rule",
"meshsize h",
"basis functions",
"Taylor series",
"series expansion",
"potential flow",
"distance d",
"explicit version",
"inclined plate",
"appropriate number",
"accuracy",
"approximation",
"integrand",
"flow",
"sheet flow",
"problem",
"geometry",
"point",
"boundary decreases",
"correction",
"error",
"sheet separation",
"planar",
"order",
"terms",
"version",
"plate",
"cylinder",
"significant difficulties",
"applications",
"form",
"rules",
"function",
"number",
"expansion",
"inaccurate evaluation",
"behavior",
"series",
"cost",
"difficulties",
"resolution",
"results",
"separation",
"evaluation",
"rate",
"decrease",
"method",
"paper"
],
"name": "Evaluation of near-singular integrals with application to vortex sheet flow",
"pagination": "581-608",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1139663906"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00162-021-00577-9"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00162-021-00577-9",
"https://app.dimensions.ai/details/publication/pub.1139663906"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:38",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_917.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00162-021-00577-9"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00577-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00577-9'

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00577-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00577-9'

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      22 PREDICATES      95 URIs      81 LITERALS      6 BLANK NODES

Subject Predicate Object
2 anzsrc-for:0101
3 schema:author Nc5f2cbae7bc94173b9894fa19a5107eb
4 schema:citation sg:pub.10.1007/978-1-4614-3997-4_21
5 sg:pub.10.1007/bf01061258
6 sg:pub.10.1007/s00162-007-0053-2
7 sg:pub.10.1007/s00162-020-00524-0
8 sg:pub.10.1007/s10444-016-9484-x
9 sg:pub.10.1007/s10543-017-0689-2
10 schema:datePublished 2021-07-13
11 schema:datePublishedReg 2021-07-13
12 schema:description This paper presents a method to evaluate the near-singular line integrals that solve elliptic boundary value problems in planar and axisymmetric geometries. The integrals are near-singular for target points not on, but near the boundary, and standard quadratures lose accuracy as the distance d to the boundary decreases. The method is based on Taylor series approximations of the integrands that capture the near-singular behaviour and can be integrated in closed form. It amounts to applying the trapezoid rule with meshsize h, and adding a correction for each of the basis functions in the Taylor series. The corrections are computed at a cost of O(nw)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n_w)$$\end{document} per target point, where typically, nw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_w$$\end{document}=10–40. Any desired order of accuracy can be achieved using the appropriate number of terms in the Taylor series expansions. Two explicit versions of order O(h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^2)$$\end{document} and O(h3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^3)$$\end{document} are listed, with errors that decrease as d→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\rightarrow 0$$\end{document}. The method is applied to compute planar potential flow past a plate and past two cylinders, as well as long-time vortex sheet separation in flow past an inclined plate. These flows illustrate the significant difficulties introduced by inaccurate evaluation of the near-singular integrals and their resolution by the proposed method. The corrected results converge at the analytically predicted rates.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N8482983d448547c48ab2a96d178bb240
17 N93e55ecaef0e4bd8b101dd58255ea1d5
18 sg:journal.1052938
19 schema:keywords Taylor series
20 Taylor series approximation
21 Taylor series expansion
22 accuracy
23 applications
24 appropriate number
25 approximation
26 axisymmetric geometry
27 basis functions
28 behavior
29 boundary decreases
30 boundary value problem
31 correction
32 cost
33 cylinder
34 decrease
35 difficulties
36 distance d
37 elliptic boundary value problems
38 error
39 evaluation
40 expansion
41 explicit version
42 flow
43 form
44 function
45 geometry
46 inaccurate evaluation
47 inclined plate
48 integrals
49 integrand
50 line integrals
51 meshsize h
52 method
53 near-singular behaviors
54 near-singular integrals
55 number
56 order
57 order of accuracy
58 paper
59 planar
60 plate
61 point
62 potential flow
63 problem
65 rate
66 resolution
67 results
68 rules
69 separation
70 series
71 series approximation
72 series expansion
73 sheet flow
74 sheet separation
75 significant difficulties
76 singular integrals
78 target point
79 terms
80 trapezoid rule
81 value problem
82 version
83 schema:name Evaluation of near-singular integrals with application to vortex sheet flow
84 schema:pagination 581-608
85 schema:productId Nd00868cee8bb467ba4ac74be6a836f2d
86 Nfe76ce0ba9b04dab957b72f9734f7942
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139663906
88 https://doi.org/10.1007/s00162-021-00577-9
89 schema:sdDatePublished 2022-05-20T07:38
91 schema:sdPublisher N3dc5a3bc85604d46914fcbaa925a4585
92 schema:url https://doi.org/10.1007/s00162-021-00577-9
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N3dc5a3bc85604d46914fcbaa925a4585 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
99 rdf:type schema:PublicationVolume
100 N93e55ecaef0e4bd8b101dd58255ea1d5 schema:issueNumber 5
101 rdf:type schema:PublicationIssue
102 Nc5f2cbae7bc94173b9894fa19a5107eb rdf:first sg:person.01236602664.27
103 rdf:rest rdf:nil
104 Nd00868cee8bb467ba4ac74be6a836f2d schema:name dimensions_id
105 schema:value pub.1139663906
106 rdf:type schema:PropertyValue
107 Nfe76ce0ba9b04dab957b72f9734f7942 schema:name doi
108 schema:value 10.1007/s00162-021-00577-9
109 rdf:type schema:PropertyValue
110 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
111 schema:name Mathematical Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
114 schema:name Pure Mathematics
115 rdf:type schema:DefinedTerm
116 sg:journal.1052938 schema:issn 0935-4964
117 1432-2250
118 schema:name Theoretical and Computational Fluid Dynamics
119 schema:publisher Springer Nature
120 rdf:type schema:Periodical
121 sg:person.01236602664.27 schema:affiliation grid-institutes:grid.266832.b
122 schema:familyName Nitsche
123 schema:givenName Monika
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236602664.27
125 rdf:type schema:Person
126 sg:pub.10.1007/978-1-4614-3997-4_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038486456
127 https://doi.org/10.1007/978-1-4614-3997-4_21
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bf01061258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006391170
130 https://doi.org/10.1007/bf01061258
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s00162-007-0053-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020984069
133 https://doi.org/10.1007/s00162-007-0053-2
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s00162-020-00524-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126583262
136 https://doi.org/10.1007/s00162-020-00524-0
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s10444-016-9484-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018360000
139 https://doi.org/10.1007/s10444-016-9484-x
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s10543-017-0689-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092556459
142 https://doi.org/10.1007/s10543-017-0689-2
143 rdf:type schema:CreativeWork
144 grid-institutes:grid.266832.b schema:alternateName Department of Mathematics and Statistics, University of New Mexico, 87131, Albuquerque, NM, USA
145 schema:name Department of Mathematics and Statistics, University of New Mexico, 87131, Albuquerque, NM, USA
146 rdf:type schema:Organization