Investigation of Görtler vortices in high-speed boundary layers via an efficient numerical solution to the non-linear boundary region equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-07-03

AUTHORS

Omar Es-Sahli, Adrian Sescu, Mohammed Afsar, Yuji Hattori

ABSTRACT

Streamwise vortices and the associated streaks evolve in boundary layers over flat or concave surfaces due to disturbances initiated upstream or triggered by the wall surface. Following the transient growth phase, the fully developed vortex structures become susceptible to inviscid secondary instabilities resulting in early transition to turbulence via ‘bursting’ processes. In high-speed boundary layers, more complications arise due to compressibility and thermal effects, which become more significant for higher Mach numbers. In this paper, we study Görtler vortices developing in high-speed boundary layers using the boundary region equations (BRE) formalism, which we solve using an efficient numerical algorithm. Streaks are excited using a small transpiration velocity at the wall. Our BRE-based algorithm is found to be superior to direct numerical simulation (DNS) and ad hoc nonlinear parabolized stability equation (PSE) models. BRE solutions are less computationally costly than a full DNS and have a more rigorous theoretical foundation than PSE-based models. For example, the full development of a Görtler vortex system in high-speed boundary layers can be predicted in a matter of minutes using a single processor via the BRE approach. This substantial reduction in calculation time is one of the major achievements of this work. We show, among other things, that it allows investigation into feedback control in reasonable total computational times. We investigate the development of the Görtler vortex system via the BRE solution with feedback control parametrically at various freestream Mach numbers M∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\infty $$\end{document} and spanwise separations λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} of the inflow disturbances. More... »

PAGES

237-249

References to SciGraph publications

  • 1993-11. Goertler instability of a hypersonic boundary layer in EXPERIMENTS IN FLUIDS
  • 2017-07-28. Visualization of Görtler vortices in supersonic concave boundary layer in JOURNAL OF VISUALIZATION
  • 1989-05. On the görtler vortex instability mechanism at hypersonic speeds in THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS
  • 1989-09. The growth of Görtler vortices in compressible boundary layers in JOURNAL OF ENGINEERING MATHEMATICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00162-021-00576-w

    DOI

    http://dx.doi.org/10.1007/s00162-021-00576-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1139360659


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Aerospace Engineering, Mississippi State University, Starkville, USA", 
              "id": "http://www.grid.ac/institutes/grid.260120.7", 
              "name": [
                "Department of Aerospace Engineering, Mississippi State University, Starkville, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Es-Sahli", 
            "givenName": "Omar", 
            "id": "sg:person.011653503653.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011653503653.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Aerospace Engineering, Mississippi State University, Starkville, USA", 
              "id": "http://www.grid.ac/institutes/grid.260120.7", 
              "name": [
                "Department of Aerospace Engineering, Mississippi State University, Starkville, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sescu", 
            "givenName": "Adrian", 
            "id": "sg:person.015343520522.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015343520522.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mechanical and Aerospace Engineering, Strathclyde University, Glasgow, UK", 
              "id": "http://www.grid.ac/institutes/grid.11984.35", 
              "name": [
                "Department of Mechanical and Aerospace Engineering, Strathclyde University, Glasgow, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Afsar", 
            "givenName": "Mohammed", 
            "id": "sg:person.014105517047.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014105517047.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Fluid Science, Tohoku University, Sendai, Japan", 
              "id": "http://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "Institute of Fluid Science, Tohoku University, Sendai, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hattori", 
            "givenName": "Yuji", 
            "id": "sg:person.012545331631.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012545331631.97"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00188500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002548144", 
              "https://doi.org/10.1007/bf00188500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00417916", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003383553", 
              "https://doi.org/10.1007/bf00417916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12650-017-0443-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090921017", 
              "https://doi.org/10.1007/s12650-017-0443-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02383571", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008045517", 
              "https://doi.org/10.1007/bf02383571"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-07-03", 
        "datePublishedReg": "2021-07-03", 
        "description": "Streamwise vortices and the associated streaks evolve in boundary layers over flat or concave surfaces due to disturbances initiated upstream or triggered by the wall surface. Following the transient growth phase, the fully developed vortex structures become susceptible to inviscid secondary instabilities resulting in early transition to turbulence via \u2018bursting\u2019 processes. In high-speed boundary layers, more complications arise due to compressibility and thermal effects, which become more significant for higher Mach numbers. In this paper, we study G\u00f6rtler vortices developing in high-speed boundary layers using the boundary region equations (BRE) formalism, which we solve using an efficient numerical algorithm. Streaks are excited using a small transpiration velocity at the wall. Our BRE-based algorithm is found to be superior to direct numerical simulation (DNS) and ad hoc nonlinear parabolized stability equation (PSE) models. BRE solutions are less computationally costly than a full DNS and have a more rigorous theoretical foundation than PSE-based models. For example, the full development of a G\u00f6rtler vortex system in high-speed boundary layers can be predicted in a matter of minutes using a single processor via the BRE approach. This substantial reduction in calculation time is one of the major achievements of this work. We show, among other things, that it allows investigation into feedback control in reasonable total computational times. We investigate the development of the G\u00f6rtler vortex system via the BRE solution with feedback control parametrically at various freestream Mach numbers M\u221e\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$M_\\infty $$\\end{document} and spanwise separations \u03bb\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\lambda $$\\end{document} of the inflow disturbances.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00162-021-00576-w", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052938", 
            "issn": [
              "0935-4964", 
              "1432-2250"
            ], 
            "name": "Theoretical and Computational Fluid Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "36"
          }
        ], 
        "keywords": [
          "high-speed boundary layers", 
          "boundary layer", 
          "feedback control", 
          "G\u00f6rtler vortices", 
          "vortex system", 
          "efficient numerical solution", 
          "Mach number", 
          "efficient numerical algorithm", 
          "inviscid secondary instabilities", 
          "rigorous theoretical foundation", 
          "boundary-region equations", 
          "total computational time", 
          "freestream Mach number", 
          "high Mach numbers", 
          "numerical solution", 
          "numerical algorithm", 
          "streamwise vortices", 
          "transpiration velocity", 
          "equation formalism", 
          "computational time", 
          "inflow disturbances", 
          "calculation time", 
          "wall surface", 
          "transient growth phase", 
          "vortex structures", 
          "numerical simulations", 
          "secondary instability", 
          "thermal effects", 
          "vortices", 
          "layer", 
          "concave surface", 
          "single processor", 
          "equation model", 
          "solution", 
          "theoretical foundation", 
          "algorithm", 
          "Nonlinear", 
          "surface", 
          "equations", 
          "formalism", 
          "early transition", 
          "substantial reduction", 
          "model", 
          "matter of minutes", 
          "velocity", 
          "simulations", 
          "disturbances", 
          "compressibility", 
          "system", 
          "investigation", 
          "wall", 
          "number", 
          "separation", 
          "processors", 
          "major achievements", 
          "instability", 
          "phase", 
          "DN", 
          "transition", 
          "structure", 
          "control", 
          "process", 
          "time", 
          "approach", 
          "work", 
          "full development", 
          "reduction", 
          "evolve", 
          "streaks", 
          "bursting", 
          "development", 
          "example", 
          "foundation", 
          "effect", 
          "matter", 
          "BRE", 
          "PSE", 
          "things", 
          "minutes", 
          "achievement", 
          "growth phase", 
          "more complications", 
          "complications", 
          "paper"
        ], 
        "name": "Investigation of G\u00f6rtler vortices in high-speed boundary layers via an efficient numerical solution to the non-linear boundary region equations", 
        "pagination": "237-249", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1139360659"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00162-021-00576-w"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00162-021-00576-w", 
          "https://app.dimensions.ai/details/publication/pub.1139360659"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_876.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00162-021-00576-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00576-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00576-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00576-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00576-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    185 TRIPLES      22 PREDICATES      113 URIs      101 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00162-021-00576-w schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author Nfccb46d3b5904cb8a24995f4b323c77f
    4 schema:citation sg:pub.10.1007/bf00188500
    5 sg:pub.10.1007/bf00417916
    6 sg:pub.10.1007/bf02383571
    7 sg:pub.10.1007/s12650-017-0443-5
    8 schema:datePublished 2021-07-03
    9 schema:datePublishedReg 2021-07-03
    10 schema:description Streamwise vortices and the associated streaks evolve in boundary layers over flat or concave surfaces due to disturbances initiated upstream or triggered by the wall surface. Following the transient growth phase, the fully developed vortex structures become susceptible to inviscid secondary instabilities resulting in early transition to turbulence via ‘bursting’ processes. In high-speed boundary layers, more complications arise due to compressibility and thermal effects, which become more significant for higher Mach numbers. In this paper, we study Görtler vortices developing in high-speed boundary layers using the boundary region equations (BRE) formalism, which we solve using an efficient numerical algorithm. Streaks are excited using a small transpiration velocity at the wall. Our BRE-based algorithm is found to be superior to direct numerical simulation (DNS) and ad hoc nonlinear parabolized stability equation (PSE) models. BRE solutions are less computationally costly than a full DNS and have a more rigorous theoretical foundation than PSE-based models. For example, the full development of a Görtler vortex system in high-speed boundary layers can be predicted in a matter of minutes using a single processor via the BRE approach. This substantial reduction in calculation time is one of the major achievements of this work. We show, among other things, that it allows investigation into feedback control in reasonable total computational times. We investigate the development of the Görtler vortex system via the BRE solution with feedback control parametrically at various freestream Mach numbers M∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\infty $$\end{document} and spanwise separations λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} of the inflow disturbances.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf Na3561cc8dc21481f86a57bac3fa807bc
    15 Nde368ec4f4d34b53a37fcec9bb975951
    16 sg:journal.1052938
    17 schema:keywords BRE
    18 DN
    19 Görtler vortices
    20 Mach number
    21 Nonlinear
    22 PSE
    23 achievement
    24 algorithm
    25 approach
    26 boundary layer
    27 boundary-region equations
    28 bursting
    29 calculation time
    30 complications
    31 compressibility
    32 computational time
    33 concave surface
    34 control
    35 development
    36 disturbances
    37 early transition
    38 effect
    39 efficient numerical algorithm
    40 efficient numerical solution
    41 equation formalism
    42 equation model
    43 equations
    44 evolve
    45 example
    46 feedback control
    47 formalism
    48 foundation
    49 freestream Mach number
    50 full development
    51 growth phase
    52 high Mach numbers
    53 high-speed boundary layers
    54 inflow disturbances
    55 instability
    56 investigation
    57 inviscid secondary instabilities
    58 layer
    59 major achievements
    60 matter
    61 matter of minutes
    62 minutes
    63 model
    64 more complications
    65 number
    66 numerical algorithm
    67 numerical simulations
    68 numerical solution
    69 paper
    70 phase
    71 process
    72 processors
    73 reduction
    74 rigorous theoretical foundation
    75 secondary instability
    76 separation
    77 simulations
    78 single processor
    79 solution
    80 streaks
    81 streamwise vortices
    82 structure
    83 substantial reduction
    84 surface
    85 system
    86 theoretical foundation
    87 thermal effects
    88 things
    89 time
    90 total computational time
    91 transient growth phase
    92 transition
    93 transpiration velocity
    94 velocity
    95 vortex structures
    96 vortex system
    97 vortices
    98 wall
    99 wall surface
    100 work
    101 schema:name Investigation of Görtler vortices in high-speed boundary layers via an efficient numerical solution to the non-linear boundary region equations
    102 schema:pagination 237-249
    103 schema:productId N308e294a2ee2476597c3f518bdbfd2a9
    104 Ncf8daae735cb4fe888be2745bd1db31d
    105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139360659
    106 https://doi.org/10.1007/s00162-021-00576-w
    107 schema:sdDatePublished 2022-05-20T07:38
    108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    109 schema:sdPublisher N61224b2d9f204481bec1e95a66d2af8d
    110 schema:url https://doi.org/10.1007/s00162-021-00576-w
    111 sgo:license sg:explorer/license/
    112 sgo:sdDataset articles
    113 rdf:type schema:ScholarlyArticle
    114 N308e294a2ee2476597c3f518bdbfd2a9 schema:name dimensions_id
    115 schema:value pub.1139360659
    116 rdf:type schema:PropertyValue
    117 N61224b2d9f204481bec1e95a66d2af8d schema:name Springer Nature - SN SciGraph project
    118 rdf:type schema:Organization
    119 N6d731afc247443c595f44bfb199bb466 rdf:first sg:person.014105517047.01
    120 rdf:rest Ne6a149f37939454cb2624a78ba208e65
    121 Na3561cc8dc21481f86a57bac3fa807bc schema:issueNumber 2
    122 rdf:type schema:PublicationIssue
    123 Ncf8daae735cb4fe888be2745bd1db31d schema:name doi
    124 schema:value 10.1007/s00162-021-00576-w
    125 rdf:type schema:PropertyValue
    126 Nd63f922a759a42ad937e75c1dcfc3f60 rdf:first sg:person.015343520522.35
    127 rdf:rest N6d731afc247443c595f44bfb199bb466
    128 Nde368ec4f4d34b53a37fcec9bb975951 schema:volumeNumber 36
    129 rdf:type schema:PublicationVolume
    130 Ne6a149f37939454cb2624a78ba208e65 rdf:first sg:person.012545331631.97
    131 rdf:rest rdf:nil
    132 Nfccb46d3b5904cb8a24995f4b323c77f rdf:first sg:person.011653503653.36
    133 rdf:rest Nd63f922a759a42ad937e75c1dcfc3f60
    134 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Engineering
    136 rdf:type schema:DefinedTerm
    137 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Interdisciplinary Engineering
    139 rdf:type schema:DefinedTerm
    140 sg:journal.1052938 schema:issn 0935-4964
    141 1432-2250
    142 schema:name Theoretical and Computational Fluid Dynamics
    143 schema:publisher Springer Nature
    144 rdf:type schema:Periodical
    145 sg:person.011653503653.36 schema:affiliation grid-institutes:grid.260120.7
    146 schema:familyName Es-Sahli
    147 schema:givenName Omar
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011653503653.36
    149 rdf:type schema:Person
    150 sg:person.012545331631.97 schema:affiliation grid-institutes:grid.69566.3a
    151 schema:familyName Hattori
    152 schema:givenName Yuji
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012545331631.97
    154 rdf:type schema:Person
    155 sg:person.014105517047.01 schema:affiliation grid-institutes:grid.11984.35
    156 schema:familyName Afsar
    157 schema:givenName Mohammed
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014105517047.01
    159 rdf:type schema:Person
    160 sg:person.015343520522.35 schema:affiliation grid-institutes:grid.260120.7
    161 schema:familyName Sescu
    162 schema:givenName Adrian
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015343520522.35
    164 rdf:type schema:Person
    165 sg:pub.10.1007/bf00188500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002548144
    166 https://doi.org/10.1007/bf00188500
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/bf00417916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003383553
    169 https://doi.org/10.1007/bf00417916
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/bf02383571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008045517
    172 https://doi.org/10.1007/bf02383571
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s12650-017-0443-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090921017
    175 https://doi.org/10.1007/s12650-017-0443-5
    176 rdf:type schema:CreativeWork
    177 grid-institutes:grid.11984.35 schema:alternateName Department of Mechanical and Aerospace Engineering, Strathclyde University, Glasgow, UK
    178 schema:name Department of Mechanical and Aerospace Engineering, Strathclyde University, Glasgow, UK
    179 rdf:type schema:Organization
    180 grid-institutes:grid.260120.7 schema:alternateName Department of Aerospace Engineering, Mississippi State University, Starkville, USA
    181 schema:name Department of Aerospace Engineering, Mississippi State University, Starkville, USA
    182 rdf:type schema:Organization
    183 grid-institutes:grid.69566.3a schema:alternateName Institute of Fluid Science, Tohoku University, Sendai, Japan
    184 schema:name Institute of Fluid Science, Tohoku University, Sendai, Japan
    185 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...