Ontology type: schema:ScholarlyArticle
2021-07-03
AUTHORSOmar Es-Sahli, Adrian Sescu, Mohammed Afsar, Yuji Hattori
ABSTRACTStreamwise vortices and the associated streaks evolve in boundary layers over flat or concave surfaces due to disturbances initiated upstream or triggered by the wall surface. Following the transient growth phase, the fully developed vortex structures become susceptible to inviscid secondary instabilities resulting in early transition to turbulence via ‘bursting’ processes. In high-speed boundary layers, more complications arise due to compressibility and thermal effects, which become more significant for higher Mach numbers. In this paper, we study Görtler vortices developing in high-speed boundary layers using the boundary region equations (BRE) formalism, which we solve using an efficient numerical algorithm. Streaks are excited using a small transpiration velocity at the wall. Our BRE-based algorithm is found to be superior to direct numerical simulation (DNS) and ad hoc nonlinear parabolized stability equation (PSE) models. BRE solutions are less computationally costly than a full DNS and have a more rigorous theoretical foundation than PSE-based models. For example, the full development of a Görtler vortex system in high-speed boundary layers can be predicted in a matter of minutes using a single processor via the BRE approach. This substantial reduction in calculation time is one of the major achievements of this work. We show, among other things, that it allows investigation into feedback control in reasonable total computational times. We investigate the development of the Görtler vortex system via the BRE solution with feedback control parametrically at various freestream Mach numbers M∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\infty $$\end{document} and spanwise separations λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} of the inflow disturbances. More... »
PAGES237-249
http://scigraph.springernature.com/pub.10.1007/s00162-021-00576-w
DOIhttp://dx.doi.org/10.1007/s00162-021-00576-w
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1139360659
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Interdisciplinary Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Aerospace Engineering, Mississippi State University, Starkville, USA",
"id": "http://www.grid.ac/institutes/grid.260120.7",
"name": [
"Department of Aerospace Engineering, Mississippi State University, Starkville, USA"
],
"type": "Organization"
},
"familyName": "Es-Sahli",
"givenName": "Omar",
"id": "sg:person.011653503653.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011653503653.36"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Aerospace Engineering, Mississippi State University, Starkville, USA",
"id": "http://www.grid.ac/institutes/grid.260120.7",
"name": [
"Department of Aerospace Engineering, Mississippi State University, Starkville, USA"
],
"type": "Organization"
},
"familyName": "Sescu",
"givenName": "Adrian",
"id": "sg:person.015343520522.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015343520522.35"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mechanical and Aerospace Engineering, Strathclyde University, Glasgow, UK",
"id": "http://www.grid.ac/institutes/grid.11984.35",
"name": [
"Department of Mechanical and Aerospace Engineering, Strathclyde University, Glasgow, UK"
],
"type": "Organization"
},
"familyName": "Afsar",
"givenName": "Mohammed",
"id": "sg:person.014105517047.01",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014105517047.01"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Fluid Science, Tohoku University, Sendai, Japan",
"id": "http://www.grid.ac/institutes/grid.69566.3a",
"name": [
"Institute of Fluid Science, Tohoku University, Sendai, Japan"
],
"type": "Organization"
},
"familyName": "Hattori",
"givenName": "Yuji",
"id": "sg:person.012545331631.97",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012545331631.97"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00188500",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002548144",
"https://doi.org/10.1007/bf00188500"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00417916",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003383553",
"https://doi.org/10.1007/bf00417916"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s12650-017-0443-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090921017",
"https://doi.org/10.1007/s12650-017-0443-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02383571",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008045517",
"https://doi.org/10.1007/bf02383571"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-07-03",
"datePublishedReg": "2021-07-03",
"description": "Streamwise vortices and the associated streaks evolve in boundary layers over flat or concave surfaces due to disturbances initiated upstream or triggered by the wall surface. Following the transient growth phase, the fully developed vortex structures become susceptible to inviscid secondary instabilities resulting in early transition to turbulence via \u2018bursting\u2019 processes. In high-speed boundary layers, more complications arise due to compressibility and thermal effects, which become more significant for higher Mach numbers. In this paper, we study G\u00f6rtler vortices developing in high-speed boundary layers using the boundary region equations (BRE) formalism, which we solve using an efficient numerical algorithm. Streaks are excited using a small transpiration velocity at the wall. Our BRE-based algorithm is found to be superior to direct numerical simulation (DNS) and ad hoc nonlinear parabolized stability equation (PSE) models. BRE solutions are less computationally costly than a full DNS and have a more rigorous theoretical foundation than PSE-based models. For example, the full development of a G\u00f6rtler vortex system in high-speed boundary layers can be predicted in a matter of minutes using a single processor via the BRE approach. This substantial reduction in calculation time is one of the major achievements of this work. We show, among other things, that it allows investigation into feedback control in reasonable total computational times. We investigate the development of the G\u00f6rtler vortex system via the BRE solution with feedback control parametrically at various freestream Mach numbers M\u221e\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$M_\\infty $$\\end{document} and spanwise separations \u03bb\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\lambda $$\\end{document} of the inflow disturbances.",
"genre": "article",
"id": "sg:pub.10.1007/s00162-021-00576-w",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1052938",
"issn": [
"0935-4964",
"1432-2250"
],
"name": "Theoretical and Computational Fluid Dynamics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "36"
}
],
"keywords": [
"high-speed boundary layers",
"boundary layer",
"feedback control",
"G\u00f6rtler vortices",
"vortex system",
"efficient numerical solution",
"Mach number",
"efficient numerical algorithm",
"inviscid secondary instabilities",
"rigorous theoretical foundation",
"boundary-region equations",
"total computational time",
"freestream Mach number",
"high Mach numbers",
"numerical solution",
"numerical algorithm",
"streamwise vortices",
"transpiration velocity",
"equation formalism",
"computational time",
"inflow disturbances",
"calculation time",
"wall surface",
"transient growth phase",
"vortex structures",
"numerical simulations",
"secondary instability",
"thermal effects",
"vortices",
"layer",
"concave surface",
"single processor",
"equation model",
"solution",
"theoretical foundation",
"algorithm",
"Nonlinear",
"surface",
"equations",
"formalism",
"early transition",
"substantial reduction",
"model",
"matter of minutes",
"velocity",
"simulations",
"disturbances",
"compressibility",
"system",
"investigation",
"wall",
"number",
"separation",
"processors",
"major achievements",
"instability",
"phase",
"DN",
"transition",
"structure",
"control",
"process",
"time",
"approach",
"work",
"full development",
"reduction",
"evolve",
"streaks",
"bursting",
"development",
"example",
"foundation",
"effect",
"matter",
"BRE",
"PSE",
"things",
"minutes",
"achievement",
"growth phase",
"more complications",
"complications",
"paper"
],
"name": "Investigation of G\u00f6rtler vortices in high-speed boundary layers via an efficient numerical solution to the non-linear boundary region equations",
"pagination": "237-249",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1139360659"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00162-021-00576-w"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00162-021-00576-w",
"https://app.dimensions.ai/details/publication/pub.1139360659"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:38",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_876.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00162-021-00576-w"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00576-w'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00576-w'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00576-w'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00576-w'
This table displays all metadata directly associated to this object as RDF triples.
185 TRIPLES
22 PREDICATES
113 URIs
101 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00162-021-00576-w | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0915 |
3 | ″ | schema:author | Nfccb46d3b5904cb8a24995f4b323c77f |
4 | ″ | schema:citation | sg:pub.10.1007/bf00188500 |
5 | ″ | ″ | sg:pub.10.1007/bf00417916 |
6 | ″ | ″ | sg:pub.10.1007/bf02383571 |
7 | ″ | ″ | sg:pub.10.1007/s12650-017-0443-5 |
8 | ″ | schema:datePublished | 2021-07-03 |
9 | ″ | schema:datePublishedReg | 2021-07-03 |
10 | ″ | schema:description | Streamwise vortices and the associated streaks evolve in boundary layers over flat or concave surfaces due to disturbances initiated upstream or triggered by the wall surface. Following the transient growth phase, the fully developed vortex structures become susceptible to inviscid secondary instabilities resulting in early transition to turbulence via ‘bursting’ processes. In high-speed boundary layers, more complications arise due to compressibility and thermal effects, which become more significant for higher Mach numbers. In this paper, we study Görtler vortices developing in high-speed boundary layers using the boundary region equations (BRE) formalism, which we solve using an efficient numerical algorithm. Streaks are excited using a small transpiration velocity at the wall. Our BRE-based algorithm is found to be superior to direct numerical simulation (DNS) and ad hoc nonlinear parabolized stability equation (PSE) models. BRE solutions are less computationally costly than a full DNS and have a more rigorous theoretical foundation than PSE-based models. For example, the full development of a Görtler vortex system in high-speed boundary layers can be predicted in a matter of minutes using a single processor via the BRE approach. This substantial reduction in calculation time is one of the major achievements of this work. We show, among other things, that it allows investigation into feedback control in reasonable total computational times. We investigate the development of the Görtler vortex system via the BRE solution with feedback control parametrically at various freestream Mach numbers M∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\infty $$\end{document} and spanwise separations λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} of the inflow disturbances. |
11 | ″ | schema:genre | article |
12 | ″ | schema:inLanguage | en |
13 | ″ | schema:isAccessibleForFree | false |
14 | ″ | schema:isPartOf | Na3561cc8dc21481f86a57bac3fa807bc |
15 | ″ | ″ | Nde368ec4f4d34b53a37fcec9bb975951 |
16 | ″ | ″ | sg:journal.1052938 |
17 | ″ | schema:keywords | BRE |
18 | ″ | ″ | DN |
19 | ″ | ″ | Görtler vortices |
20 | ″ | ″ | Mach number |
21 | ″ | ″ | Nonlinear |
22 | ″ | ″ | PSE |
23 | ″ | ″ | achievement |
24 | ″ | ″ | algorithm |
25 | ″ | ″ | approach |
26 | ″ | ″ | boundary layer |
27 | ″ | ″ | boundary-region equations |
28 | ″ | ″ | bursting |
29 | ″ | ″ | calculation time |
30 | ″ | ″ | complications |
31 | ″ | ″ | compressibility |
32 | ″ | ″ | computational time |
33 | ″ | ″ | concave surface |
34 | ″ | ″ | control |
35 | ″ | ″ | development |
36 | ″ | ″ | disturbances |
37 | ″ | ″ | early transition |
38 | ″ | ″ | effect |
39 | ″ | ″ | efficient numerical algorithm |
40 | ″ | ″ | efficient numerical solution |
41 | ″ | ″ | equation formalism |
42 | ″ | ″ | equation model |
43 | ″ | ″ | equations |
44 | ″ | ″ | evolve |
45 | ″ | ″ | example |
46 | ″ | ″ | feedback control |
47 | ″ | ″ | formalism |
48 | ″ | ″ | foundation |
49 | ″ | ″ | freestream Mach number |
50 | ″ | ″ | full development |
51 | ″ | ″ | growth phase |
52 | ″ | ″ | high Mach numbers |
53 | ″ | ″ | high-speed boundary layers |
54 | ″ | ″ | inflow disturbances |
55 | ″ | ″ | instability |
56 | ″ | ″ | investigation |
57 | ″ | ″ | inviscid secondary instabilities |
58 | ″ | ″ | layer |
59 | ″ | ″ | major achievements |
60 | ″ | ″ | matter |
61 | ″ | ″ | matter of minutes |
62 | ″ | ″ | minutes |
63 | ″ | ″ | model |
64 | ″ | ″ | more complications |
65 | ″ | ″ | number |
66 | ″ | ″ | numerical algorithm |
67 | ″ | ″ | numerical simulations |
68 | ″ | ″ | numerical solution |
69 | ″ | ″ | paper |
70 | ″ | ″ | phase |
71 | ″ | ″ | process |
72 | ″ | ″ | processors |
73 | ″ | ″ | reduction |
74 | ″ | ″ | rigorous theoretical foundation |
75 | ″ | ″ | secondary instability |
76 | ″ | ″ | separation |
77 | ″ | ″ | simulations |
78 | ″ | ″ | single processor |
79 | ″ | ″ | solution |
80 | ″ | ″ | streaks |
81 | ″ | ″ | streamwise vortices |
82 | ″ | ″ | structure |
83 | ″ | ″ | substantial reduction |
84 | ″ | ″ | surface |
85 | ″ | ″ | system |
86 | ″ | ″ | theoretical foundation |
87 | ″ | ″ | thermal effects |
88 | ″ | ″ | things |
89 | ″ | ″ | time |
90 | ″ | ″ | total computational time |
91 | ″ | ″ | transient growth phase |
92 | ″ | ″ | transition |
93 | ″ | ″ | transpiration velocity |
94 | ″ | ″ | velocity |
95 | ″ | ″ | vortex structures |
96 | ″ | ″ | vortex system |
97 | ″ | ″ | vortices |
98 | ″ | ″ | wall |
99 | ″ | ″ | wall surface |
100 | ″ | ″ | work |
101 | ″ | schema:name | Investigation of Görtler vortices in high-speed boundary layers via an efficient numerical solution to the non-linear boundary region equations |
102 | ″ | schema:pagination | 237-249 |
103 | ″ | schema:productId | N308e294a2ee2476597c3f518bdbfd2a9 |
104 | ″ | ″ | Ncf8daae735cb4fe888be2745bd1db31d |
105 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1139360659 |
106 | ″ | ″ | https://doi.org/10.1007/s00162-021-00576-w |
107 | ″ | schema:sdDatePublished | 2022-05-20T07:38 |
108 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
109 | ″ | schema:sdPublisher | N61224b2d9f204481bec1e95a66d2af8d |
110 | ″ | schema:url | https://doi.org/10.1007/s00162-021-00576-w |
111 | ″ | sgo:license | sg:explorer/license/ |
112 | ″ | sgo:sdDataset | articles |
113 | ″ | rdf:type | schema:ScholarlyArticle |
114 | N308e294a2ee2476597c3f518bdbfd2a9 | schema:name | dimensions_id |
115 | ″ | schema:value | pub.1139360659 |
116 | ″ | rdf:type | schema:PropertyValue |
117 | N61224b2d9f204481bec1e95a66d2af8d | schema:name | Springer Nature - SN SciGraph project |
118 | ″ | rdf:type | schema:Organization |
119 | N6d731afc247443c595f44bfb199bb466 | rdf:first | sg:person.014105517047.01 |
120 | ″ | rdf:rest | Ne6a149f37939454cb2624a78ba208e65 |
121 | Na3561cc8dc21481f86a57bac3fa807bc | schema:issueNumber | 2 |
122 | ″ | rdf:type | schema:PublicationIssue |
123 | Ncf8daae735cb4fe888be2745bd1db31d | schema:name | doi |
124 | ″ | schema:value | 10.1007/s00162-021-00576-w |
125 | ″ | rdf:type | schema:PropertyValue |
126 | Nd63f922a759a42ad937e75c1dcfc3f60 | rdf:first | sg:person.015343520522.35 |
127 | ″ | rdf:rest | N6d731afc247443c595f44bfb199bb466 |
128 | Nde368ec4f4d34b53a37fcec9bb975951 | schema:volumeNumber | 36 |
129 | ″ | rdf:type | schema:PublicationVolume |
130 | Ne6a149f37939454cb2624a78ba208e65 | rdf:first | sg:person.012545331631.97 |
131 | ″ | rdf:rest | rdf:nil |
132 | Nfccb46d3b5904cb8a24995f4b323c77f | rdf:first | sg:person.011653503653.36 |
133 | ″ | rdf:rest | Nd63f922a759a42ad937e75c1dcfc3f60 |
134 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
135 | ″ | schema:name | Engineering |
136 | ″ | rdf:type | schema:DefinedTerm |
137 | anzsrc-for:0915 | schema:inDefinedTermSet | anzsrc-for: |
138 | ″ | schema:name | Interdisciplinary Engineering |
139 | ″ | rdf:type | schema:DefinedTerm |
140 | sg:journal.1052938 | schema:issn | 0935-4964 |
141 | ″ | ″ | 1432-2250 |
142 | ″ | schema:name | Theoretical and Computational Fluid Dynamics |
143 | ″ | schema:publisher | Springer Nature |
144 | ″ | rdf:type | schema:Periodical |
145 | sg:person.011653503653.36 | schema:affiliation | grid-institutes:grid.260120.7 |
146 | ″ | schema:familyName | Es-Sahli |
147 | ″ | schema:givenName | Omar |
148 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011653503653.36 |
149 | ″ | rdf:type | schema:Person |
150 | sg:person.012545331631.97 | schema:affiliation | grid-institutes:grid.69566.3a |
151 | ″ | schema:familyName | Hattori |
152 | ″ | schema:givenName | Yuji |
153 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012545331631.97 |
154 | ″ | rdf:type | schema:Person |
155 | sg:person.014105517047.01 | schema:affiliation | grid-institutes:grid.11984.35 |
156 | ″ | schema:familyName | Afsar |
157 | ″ | schema:givenName | Mohammed |
158 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014105517047.01 |
159 | ″ | rdf:type | schema:Person |
160 | sg:person.015343520522.35 | schema:affiliation | grid-institutes:grid.260120.7 |
161 | ″ | schema:familyName | Sescu |
162 | ″ | schema:givenName | Adrian |
163 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015343520522.35 |
164 | ″ | rdf:type | schema:Person |
165 | sg:pub.10.1007/bf00188500 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1002548144 |
166 | ″ | ″ | https://doi.org/10.1007/bf00188500 |
167 | ″ | rdf:type | schema:CreativeWork |
168 | sg:pub.10.1007/bf00417916 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1003383553 |
169 | ″ | ″ | https://doi.org/10.1007/bf00417916 |
170 | ″ | rdf:type | schema:CreativeWork |
171 | sg:pub.10.1007/bf02383571 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1008045517 |
172 | ″ | ″ | https://doi.org/10.1007/bf02383571 |
173 | ″ | rdf:type | schema:CreativeWork |
174 | sg:pub.10.1007/s12650-017-0443-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1090921017 |
175 | ″ | ″ | https://doi.org/10.1007/s12650-017-0443-5 |
176 | ″ | rdf:type | schema:CreativeWork |
177 | grid-institutes:grid.11984.35 | schema:alternateName | Department of Mechanical and Aerospace Engineering, Strathclyde University, Glasgow, UK |
178 | ″ | schema:name | Department of Mechanical and Aerospace Engineering, Strathclyde University, Glasgow, UK |
179 | ″ | rdf:type | schema:Organization |
180 | grid-institutes:grid.260120.7 | schema:alternateName | Department of Aerospace Engineering, Mississippi State University, Starkville, USA |
181 | ″ | schema:name | Department of Aerospace Engineering, Mississippi State University, Starkville, USA |
182 | ″ | rdf:type | schema:Organization |
183 | grid-institutes:grid.69566.3a | schema:alternateName | Institute of Fluid Science, Tohoku University, Sendai, Japan |
184 | ″ | schema:name | Institute of Fluid Science, Tohoku University, Sendai, Japan |
185 | ″ | rdf:type | schema:Organization |