2021-06-27
AUTHORSAlexander Fedorov, Anatoli Tumin
ABSTRACTMack (1977) criticized methods referring to a single frequency perturbation for correlation of transition prediction because the external disturbance source (like free stream turbulence) should have a broadband spectrum. Delta-correlated perturbations are characterized by the mean square of physical amplitude, which is expressed as a double integral of the power spectral density in frequency and the spanwise wave number. It is suggested to evaluate this integral asymptotically. The results obtained using the asymptotic method and direct numerical integration are compared with ad hoc approaches for high speed and moderate supersonic boundary layers. This allows us to suggest recommendations on rational usage of the amplitude method with avoiding unconfirmed simplifications while reducing the computational effort to the level affordable for engineering practice. More... »
PAGES9-24
http://scigraph.springernature.com/pub.10.1007/s00162-021-00575-x
DOIhttp://dx.doi.org/10.1007/s00162-021-00575-x
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1139190406
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Interdisciplinary Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russian Federation",
"id": "http://www.grid.ac/institutes/grid.18763.3b",
"name": [
"Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russian Federation"
],
"type": "Organization"
},
"familyName": "Fedorov",
"givenName": "Alexander",
"id": "sg:person.015352032701.59",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015352032701.59"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "The University of Arizona, 1130 N. Mountain Ave, 85721, Tucson, AZ, USA",
"id": "http://www.grid.ac/institutes/grid.134563.6",
"name": [
"The University of Arizona, 1130 N. Mountain Ave, 85721, Tucson, AZ, USA"
],
"type": "Organization"
},
"familyName": "Tumin",
"givenName": "Anatoli",
"id": "sg:person.012205004765.97",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012205004765.97"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-94-011-4515-2_3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037963179",
"https://doi.org/10.1007/978-94-011-4515-2_3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-3430-2_28",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000829011",
"https://doi.org/10.1007/978-1-4612-3430-2_28"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-06-27",
"datePublishedReg": "2021-06-27",
"description": "Mack (1977) criticized methods referring to a single frequency perturbation for correlation of transition prediction because the external disturbance source (like free stream turbulence) should have a broadband spectrum. Delta-correlated perturbations are characterized by the mean square of physical amplitude, which is expressed as a double integral of the power spectral density in frequency and the spanwise wave number. It is suggested to evaluate this integral asymptotically. The results obtained using the asymptotic method and direct numerical integration are compared with ad hoc approaches for high speed and moderate supersonic boundary layers. This allows us to suggest recommendations on rational usage of the amplitude method with avoiding unconfirmed simplifications while reducing the computational effort to the level affordable for engineering practice.",
"genre": "article",
"id": "sg:pub.10.1007/s00162-021-00575-x",
"inLanguage": "en",
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.8414239",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1052938",
"issn": [
"0935-4964",
"1432-2250"
],
"name": "Theoretical and Computational Fluid Dynamics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "36"
}
],
"keywords": [
"supersonic boundary layer",
"spanwise wave number",
"amplitude method",
"power spectral density",
"transition prediction",
"boundary layer",
"disturbance sources",
"single-frequency perturbation",
"engineering practice",
"high speed",
"wave number",
"spectral density",
"direct numerical integration",
"computational effort",
"frequency perturbations",
"asymptotic method",
"broadband spectrum",
"numerical integration",
"mean square",
"layer",
"method",
"double integral",
"speed",
"density",
"amplitude",
"simplification",
"prediction",
"perturbations",
"rational usage",
"integrals",
"frequency",
"integration",
"source",
"results",
"squares",
"usage",
"spectra",
"number",
"delta",
"efforts",
"correlation",
"levels",
"AD",
"Mack",
"recommendations",
"practice",
"physical amplitudes"
],
"name": "The Mack\u2019s amplitude method revisited",
"pagination": "9-24",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1139190406"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00162-021-00575-x"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00162-021-00575-x",
"https://app.dimensions.ai/details/publication/pub.1139190406"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:31",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_899.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00162-021-00575-x"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00575-x'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00575-x'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00575-x'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00575-x'
This table displays all metadata directly associated to this object as RDF triples.
125 TRIPLES
22 PREDICATES
74 URIs
64 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00162-021-00575-x | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0915 |
3 | ″ | schema:author | N5a7de9b80b4942669e2a96bfad42dee2 |
4 | ″ | schema:citation | sg:pub.10.1007/978-1-4612-3430-2_28 |
5 | ″ | ″ | sg:pub.10.1007/978-94-011-4515-2_3 |
6 | ″ | schema:datePublished | 2021-06-27 |
7 | ″ | schema:datePublishedReg | 2021-06-27 |
8 | ″ | schema:description | Mack (1977) criticized methods referring to a single frequency perturbation for correlation of transition prediction because the external disturbance source (like free stream turbulence) should have a broadband spectrum. Delta-correlated perturbations are characterized by the mean square of physical amplitude, which is expressed as a double integral of the power spectral density in frequency and the spanwise wave number. It is suggested to evaluate this integral asymptotically. The results obtained using the asymptotic method and direct numerical integration are compared with ad hoc approaches for high speed and moderate supersonic boundary layers. This allows us to suggest recommendations on rational usage of the amplitude method with avoiding unconfirmed simplifications while reducing the computational effort to the level affordable for engineering practice. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | N6c7d384460dd4b8da4264c31821f02da |
13 | ″ | ″ | N7757e00520274478b3855435873533d4 |
14 | ″ | ″ | sg:journal.1052938 |
15 | ″ | schema:keywords | AD |
16 | ″ | ″ | Mack |
17 | ″ | ″ | amplitude |
18 | ″ | ″ | amplitude method |
19 | ″ | ″ | asymptotic method |
20 | ″ | ″ | boundary layer |
21 | ″ | ″ | broadband spectrum |
22 | ″ | ″ | computational effort |
23 | ″ | ″ | correlation |
24 | ″ | ″ | delta |
25 | ″ | ″ | density |
26 | ″ | ″ | direct numerical integration |
27 | ″ | ″ | disturbance sources |
28 | ″ | ″ | double integral |
29 | ″ | ″ | efforts |
30 | ″ | ″ | engineering practice |
31 | ″ | ″ | frequency |
32 | ″ | ″ | frequency perturbations |
33 | ″ | ″ | high speed |
34 | ″ | ″ | integrals |
35 | ″ | ″ | integration |
36 | ″ | ″ | layer |
37 | ″ | ″ | levels |
38 | ″ | ″ | mean square |
39 | ″ | ″ | method |
40 | ″ | ″ | number |
41 | ″ | ″ | numerical integration |
42 | ″ | ″ | perturbations |
43 | ″ | ″ | physical amplitudes |
44 | ″ | ″ | power spectral density |
45 | ″ | ″ | practice |
46 | ″ | ″ | prediction |
47 | ″ | ″ | rational usage |
48 | ″ | ″ | recommendations |
49 | ″ | ″ | results |
50 | ″ | ″ | simplification |
51 | ″ | ″ | single-frequency perturbation |
52 | ″ | ″ | source |
53 | ″ | ″ | spanwise wave number |
54 | ″ | ″ | spectra |
55 | ″ | ″ | spectral density |
56 | ″ | ″ | speed |
57 | ″ | ″ | squares |
58 | ″ | ″ | supersonic boundary layer |
59 | ″ | ″ | transition prediction |
60 | ″ | ″ | usage |
61 | ″ | ″ | wave number |
62 | ″ | schema:name | The Mack’s amplitude method revisited |
63 | ″ | schema:pagination | 9-24 |
64 | ″ | schema:productId | N05a89f6f8ffc4ba3884412a2e076e79a |
65 | ″ | ″ | Nade8966cd5544bd2bfde5aa669ce6d1b |
66 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1139190406 |
67 | ″ | ″ | https://doi.org/10.1007/s00162-021-00575-x |
68 | ″ | schema:sdDatePublished | 2022-05-10T10:31 |
69 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
70 | ″ | schema:sdPublisher | N514a084f7a224717a5b160145cbfa0a3 |
71 | ″ | schema:url | https://doi.org/10.1007/s00162-021-00575-x |
72 | ″ | sgo:license | sg:explorer/license/ |
73 | ″ | sgo:sdDataset | articles |
74 | ″ | rdf:type | schema:ScholarlyArticle |
75 | N05a89f6f8ffc4ba3884412a2e076e79a | schema:name | dimensions_id |
76 | ″ | schema:value | pub.1139190406 |
77 | ″ | rdf:type | schema:PropertyValue |
78 | N3a93495be5ce4277bb87dbe1e4366866 | rdf:first | sg:person.012205004765.97 |
79 | ″ | rdf:rest | rdf:nil |
80 | N514a084f7a224717a5b160145cbfa0a3 | schema:name | Springer Nature - SN SciGraph project |
81 | ″ | rdf:type | schema:Organization |
82 | N5a7de9b80b4942669e2a96bfad42dee2 | rdf:first | sg:person.015352032701.59 |
83 | ″ | rdf:rest | N3a93495be5ce4277bb87dbe1e4366866 |
84 | N6c7d384460dd4b8da4264c31821f02da | schema:issueNumber | 1 |
85 | ″ | rdf:type | schema:PublicationIssue |
86 | N7757e00520274478b3855435873533d4 | schema:volumeNumber | 36 |
87 | ″ | rdf:type | schema:PublicationVolume |
88 | Nade8966cd5544bd2bfde5aa669ce6d1b | schema:name | doi |
89 | ″ | schema:value | 10.1007/s00162-021-00575-x |
90 | ″ | rdf:type | schema:PropertyValue |
91 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
92 | ″ | schema:name | Engineering |
93 | ″ | rdf:type | schema:DefinedTerm |
94 | anzsrc-for:0915 | schema:inDefinedTermSet | anzsrc-for: |
95 | ″ | schema:name | Interdisciplinary Engineering |
96 | ″ | rdf:type | schema:DefinedTerm |
97 | sg:grant.8414239 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s00162-021-00575-x |
98 | ″ | rdf:type | schema:MonetaryGrant |
99 | sg:journal.1052938 | schema:issn | 0935-4964 |
100 | ″ | ″ | 1432-2250 |
101 | ″ | schema:name | Theoretical and Computational Fluid Dynamics |
102 | ″ | schema:publisher | Springer Nature |
103 | ″ | rdf:type | schema:Periodical |
104 | sg:person.012205004765.97 | schema:affiliation | grid-institutes:grid.134563.6 |
105 | ″ | schema:familyName | Tumin |
106 | ″ | schema:givenName | Anatoli |
107 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012205004765.97 |
108 | ″ | rdf:type | schema:Person |
109 | sg:person.015352032701.59 | schema:affiliation | grid-institutes:grid.18763.3b |
110 | ″ | schema:familyName | Fedorov |
111 | ″ | schema:givenName | Alexander |
112 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015352032701.59 |
113 | ″ | rdf:type | schema:Person |
114 | sg:pub.10.1007/978-1-4612-3430-2_28 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1000829011 |
115 | ″ | ″ | https://doi.org/10.1007/978-1-4612-3430-2_28 |
116 | ″ | rdf:type | schema:CreativeWork |
117 | sg:pub.10.1007/978-94-011-4515-2_3 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1037963179 |
118 | ″ | ″ | https://doi.org/10.1007/978-94-011-4515-2_3 |
119 | ″ | rdf:type | schema:CreativeWork |
120 | grid-institutes:grid.134563.6 | schema:alternateName | The University of Arizona, 1130 N. Mountain Ave, 85721, Tucson, AZ, USA |
121 | ″ | schema:name | The University of Arizona, 1130 N. Mountain Ave, 85721, Tucson, AZ, USA |
122 | ″ | rdf:type | schema:Organization |
123 | grid-institutes:grid.18763.3b | schema:alternateName | Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russian Federation |
124 | ″ | schema:name | Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russian Federation |
125 | ″ | rdf:type | schema:Organization |