The Mack’s amplitude method revisited View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-06-27

AUTHORS

Alexander Fedorov, Anatoli Tumin

ABSTRACT

Mack (1977) criticized methods referring to a single frequency perturbation for correlation of transition prediction because the external disturbance source (like free stream turbulence) should have a broadband spectrum. Delta-correlated perturbations are characterized by the mean square of physical amplitude, which is expressed as a double integral of the power spectral density in frequency and the spanwise wave number. It is suggested to evaluate this integral asymptotically. The results obtained using the asymptotic method and direct numerical integration are compared with ad hoc approaches for high speed and moderate supersonic boundary layers. This allows us to suggest recommendations on rational usage of the amplitude method with avoiding unconfirmed simplifications while reducing the computational effort to the level affordable for engineering practice. More... »

PAGES

9-24

References to SciGraph publications

  • 1999. Transition Prediction in Industrial Applications in TRANSITION, TURBULENCE AND COMBUSTION MODELLING
  • 1990. Notes on Initial Disturbance Fields for the Transition Problem in SOIL RESTORATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00162-021-00575-x

    DOI

    http://dx.doi.org/10.1007/s00162-021-00575-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1139190406


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russian Federation", 
              "id": "http://www.grid.ac/institutes/grid.18763.3b", 
              "name": [
                "Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russian Federation"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fedorov", 
            "givenName": "Alexander", 
            "id": "sg:person.015352032701.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015352032701.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The University of Arizona, 1130 N. Mountain Ave, 85721, Tucson, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.134563.6", 
              "name": [
                "The University of Arizona, 1130 N. Mountain Ave, 85721, Tucson, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tumin", 
            "givenName": "Anatoli", 
            "id": "sg:person.012205004765.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012205004765.97"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-94-011-4515-2_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037963179", 
              "https://doi.org/10.1007/978-94-011-4515-2_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-3430-2_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000829011", 
              "https://doi.org/10.1007/978-1-4612-3430-2_28"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-06-27", 
        "datePublishedReg": "2021-06-27", 
        "description": "Mack (1977) criticized methods referring to a single frequency perturbation for correlation of transition prediction because the external disturbance source (like free stream turbulence) should have a broadband spectrum. Delta-correlated perturbations are characterized by the mean square of physical amplitude, which is expressed as a double integral of the power spectral density in frequency and the spanwise wave number. It is suggested to evaluate this integral asymptotically. The results obtained using the asymptotic method and direct numerical integration are compared with ad hoc approaches for high speed and moderate supersonic boundary layers. This allows us to suggest recommendations on rational usage of the amplitude method with avoiding unconfirmed simplifications while reducing the computational effort to the level affordable for engineering practice.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00162-021-00575-x", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8414239", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052938", 
            "issn": [
              "0935-4964", 
              "1432-2250"
            ], 
            "name": "Theoretical and Computational Fluid Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "36"
          }
        ], 
        "keywords": [
          "supersonic boundary layer", 
          "spanwise wave number", 
          "amplitude method", 
          "power spectral density", 
          "transition prediction", 
          "boundary layer", 
          "disturbance sources", 
          "single-frequency perturbation", 
          "engineering practice", 
          "high speed", 
          "wave number", 
          "spectral density", 
          "direct numerical integration", 
          "computational effort", 
          "frequency perturbations", 
          "asymptotic method", 
          "broadband spectrum", 
          "numerical integration", 
          "mean square", 
          "layer", 
          "method", 
          "double integral", 
          "speed", 
          "density", 
          "amplitude", 
          "simplification", 
          "prediction", 
          "perturbations", 
          "rational usage", 
          "integrals", 
          "frequency", 
          "integration", 
          "source", 
          "results", 
          "squares", 
          "usage", 
          "spectra", 
          "number", 
          "delta", 
          "efforts", 
          "correlation", 
          "levels", 
          "AD", 
          "Mack", 
          "recommendations", 
          "practice", 
          "physical amplitudes"
        ], 
        "name": "The Mack\u2019s amplitude method revisited", 
        "pagination": "9-24", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1139190406"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00162-021-00575-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00162-021-00575-x", 
          "https://app.dimensions.ai/details/publication/pub.1139190406"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T10:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_899.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00162-021-00575-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00575-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00575-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00575-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00162-021-00575-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    125 TRIPLES      22 PREDICATES      74 URIs      64 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00162-021-00575-x schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author N5a7de9b80b4942669e2a96bfad42dee2
    4 schema:citation sg:pub.10.1007/978-1-4612-3430-2_28
    5 sg:pub.10.1007/978-94-011-4515-2_3
    6 schema:datePublished 2021-06-27
    7 schema:datePublishedReg 2021-06-27
    8 schema:description Mack (1977) criticized methods referring to a single frequency perturbation for correlation of transition prediction because the external disturbance source (like free stream turbulence) should have a broadband spectrum. Delta-correlated perturbations are characterized by the mean square of physical amplitude, which is expressed as a double integral of the power spectral density in frequency and the spanwise wave number. It is suggested to evaluate this integral asymptotically. The results obtained using the asymptotic method and direct numerical integration are compared with ad hoc approaches for high speed and moderate supersonic boundary layers. This allows us to suggest recommendations on rational usage of the amplitude method with avoiding unconfirmed simplifications while reducing the computational effort to the level affordable for engineering practice.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N6c7d384460dd4b8da4264c31821f02da
    13 N7757e00520274478b3855435873533d4
    14 sg:journal.1052938
    15 schema:keywords AD
    16 Mack
    17 amplitude
    18 amplitude method
    19 asymptotic method
    20 boundary layer
    21 broadband spectrum
    22 computational effort
    23 correlation
    24 delta
    25 density
    26 direct numerical integration
    27 disturbance sources
    28 double integral
    29 efforts
    30 engineering practice
    31 frequency
    32 frequency perturbations
    33 high speed
    34 integrals
    35 integration
    36 layer
    37 levels
    38 mean square
    39 method
    40 number
    41 numerical integration
    42 perturbations
    43 physical amplitudes
    44 power spectral density
    45 practice
    46 prediction
    47 rational usage
    48 recommendations
    49 results
    50 simplification
    51 single-frequency perturbation
    52 source
    53 spanwise wave number
    54 spectra
    55 spectral density
    56 speed
    57 squares
    58 supersonic boundary layer
    59 transition prediction
    60 usage
    61 wave number
    62 schema:name The Mack’s amplitude method revisited
    63 schema:pagination 9-24
    64 schema:productId N05a89f6f8ffc4ba3884412a2e076e79a
    65 Nade8966cd5544bd2bfde5aa669ce6d1b
    66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139190406
    67 https://doi.org/10.1007/s00162-021-00575-x
    68 schema:sdDatePublished 2022-05-10T10:31
    69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    70 schema:sdPublisher N514a084f7a224717a5b160145cbfa0a3
    71 schema:url https://doi.org/10.1007/s00162-021-00575-x
    72 sgo:license sg:explorer/license/
    73 sgo:sdDataset articles
    74 rdf:type schema:ScholarlyArticle
    75 N05a89f6f8ffc4ba3884412a2e076e79a schema:name dimensions_id
    76 schema:value pub.1139190406
    77 rdf:type schema:PropertyValue
    78 N3a93495be5ce4277bb87dbe1e4366866 rdf:first sg:person.012205004765.97
    79 rdf:rest rdf:nil
    80 N514a084f7a224717a5b160145cbfa0a3 schema:name Springer Nature - SN SciGraph project
    81 rdf:type schema:Organization
    82 N5a7de9b80b4942669e2a96bfad42dee2 rdf:first sg:person.015352032701.59
    83 rdf:rest N3a93495be5ce4277bb87dbe1e4366866
    84 N6c7d384460dd4b8da4264c31821f02da schema:issueNumber 1
    85 rdf:type schema:PublicationIssue
    86 N7757e00520274478b3855435873533d4 schema:volumeNumber 36
    87 rdf:type schema:PublicationVolume
    88 Nade8966cd5544bd2bfde5aa669ce6d1b schema:name doi
    89 schema:value 10.1007/s00162-021-00575-x
    90 rdf:type schema:PropertyValue
    91 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Engineering
    93 rdf:type schema:DefinedTerm
    94 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Interdisciplinary Engineering
    96 rdf:type schema:DefinedTerm
    97 sg:grant.8414239 http://pending.schema.org/fundedItem sg:pub.10.1007/s00162-021-00575-x
    98 rdf:type schema:MonetaryGrant
    99 sg:journal.1052938 schema:issn 0935-4964
    100 1432-2250
    101 schema:name Theoretical and Computational Fluid Dynamics
    102 schema:publisher Springer Nature
    103 rdf:type schema:Periodical
    104 sg:person.012205004765.97 schema:affiliation grid-institutes:grid.134563.6
    105 schema:familyName Tumin
    106 schema:givenName Anatoli
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012205004765.97
    108 rdf:type schema:Person
    109 sg:person.015352032701.59 schema:affiliation grid-institutes:grid.18763.3b
    110 schema:familyName Fedorov
    111 schema:givenName Alexander
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015352032701.59
    113 rdf:type schema:Person
    114 sg:pub.10.1007/978-1-4612-3430-2_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000829011
    115 https://doi.org/10.1007/978-1-4612-3430-2_28
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/978-94-011-4515-2_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037963179
    118 https://doi.org/10.1007/978-94-011-4515-2_3
    119 rdf:type schema:CreativeWork
    120 grid-institutes:grid.134563.6 schema:alternateName The University of Arizona, 1130 N. Mountain Ave, 85721, Tucson, AZ, USA
    121 schema:name The University of Arizona, 1130 N. Mountain Ave, 85721, Tucson, AZ, USA
    122 rdf:type schema:Organization
    123 grid-institutes:grid.18763.3b schema:alternateName Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russian Federation
    124 schema:name Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russian Federation
    125 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...