Formation and behavior of counter-rotating vortex rings View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03-02

AUTHORS

V. Sadri, P. S. Krueger

ABSTRACT

Concentric, counter-rotating vortex ring formation by transient jet ejection between concentric cylinders was studied numerically to determine the effects of cylinder gap ratio, ΔRR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\Delta R}{R}$$\end{document}, and jet stroke length-to-gap ratio, LΔR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{L}{\Delta R}$$\end{document}, on the evolution of the vorticity and the trajectories of the resulting axisymmetric vortex pair. The flow was simulated at a jet Reynolds number of 1000 (based on ΔR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta R$$\end{document} and the jet velocity), LΔR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{L}{\Delta R} $$\end{document} in the range 1–20, and ΔRR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\Delta R}{R}$$\end{document} in the range 0.05–0.25. Five characteristic flow evolution patterns were observed and classified based on LΔR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{L}{\Delta R} $$\end{document} and ΔRR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\Delta R}{R}$$\end{document}. The results showed that the relative position, relative strength, and radii of the vortex rings during and soon after formation played a prominent role in the evolution of the trajectories of their vorticity centroids at the later time. The conditions on relative strength of the vortices necessary for them to travel together as a pair following formation were studied, and factors affecting differences in vortex circulation following formation were investigated. In addition to the characteristics of the primary vortices, the stopping vortices had a strong influence on the initial vortex configuration and effected the long-time flow evolution at low LΔR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{L}{\Delta R}$$\end{document} and small ΔRR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\Delta R}{R}$$\end{document}. For long LΔR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{L}{\Delta R} $$\end{document} and small ΔRR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\Delta R}{R}$$\end{document}, shedding of vorticity was sometimes observed and this shedding was related to the Kelvin–Benjamin variational principle of maximal energy for steadily translating vortex rings. More... »

PAGES

369-390

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00162-017-0425-1

DOI

http://dx.doi.org/10.1007/s00162-017-0425-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084019034


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 30332, Atlanta, GA, USA", 
          "id": "http://www.grid.ac/institutes/grid.470935.c", 
          "name": [
            "Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 30332, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sadri", 
        "givenName": "V.", 
        "id": "sg:person.010174222073.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010174222073.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southern Methodist University, 75275, Dallas, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.263864.d", 
          "name": [
            "Southern Methodist University, 75275, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krueger", 
        "givenName": "P. S.", 
        "id": "sg:person.01352635635.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352635635.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01597484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038440835", 
          "https://doi.org/10.1007/bf01597484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1560354713010036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046303907", 
          "https://doi.org/10.1134/s1560354713010036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-98037-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109711510", 
          "https://doi.org/10.1007/978-3-642-98037-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-0249-0_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004657538", 
          "https://doi.org/10.1007/978-94-011-0249-0_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11012-008-9179-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006804239", 
          "https://doi.org/10.1007/s11012-008-9179-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03-02", 
    "datePublishedReg": "2017-03-02", 
    "description": "Concentric, counter-rotating vortex ring formation by transient jet ejection between concentric cylinders was studied numerically to determine the effects of cylinder gap ratio, \u0394RR\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\frac{\\Delta R}{R}$$\\end{document}, and jet stroke length-to-gap ratio, L\u0394R\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\frac{L}{\\Delta R}$$\\end{document}, on the evolution of the vorticity and the trajectories of the resulting axisymmetric vortex pair. The flow was simulated at a jet Reynolds number of 1000 (based on \u0394R\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\Delta R$$\\end{document} and the jet velocity), L\u0394R\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\frac{L}{\\Delta R} $$\\end{document} in the range 1\u201320, and \u0394RR\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\frac{\\Delta R}{R}$$\\end{document} in the range 0.05\u20130.25. Five characteristic flow evolution patterns were observed and classified based on L\u0394R\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\frac{L}{\\Delta R} $$\\end{document} and \u0394RR\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\frac{\\Delta R}{R}$$\\end{document}. The results showed that the relative position, relative strength, and radii of the vortex rings during and soon after formation played a prominent role in the evolution of the trajectories of their vorticity centroids at the later time. The conditions on relative strength of the vortices necessary for them to travel together as a pair following formation were studied, and factors affecting differences in vortex circulation following formation were investigated. In addition to the characteristics of the primary vortices, the stopping vortices had a strong influence on the initial vortex configuration and effected the long-time flow evolution at low L\u0394R\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\frac{L}{\\Delta R}$$\\end{document} and small \u0394RR\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\frac{\\Delta R}{R}$$\\end{document}. For long L\u0394R\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\frac{L}{\\Delta R} $$\\end{document} and small \u0394RR\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\frac{\\Delta R}{R}$$\\end{document}, shedding of vorticity was sometimes observed and this shedding was related to the Kelvin\u2013Benjamin variational principle of maximal energy for steadily translating vortex rings.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00162-017-0425-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3129612", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1052938", 
        "issn": [
          "0935-4964", 
          "1432-2250"
        ], 
        "name": "Theoretical and Computational Fluid Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "keywords": [
      "ring formation", 
      "evolution", 
      "evolution patterns", 
      "prominent role", 
      "formation", 
      "effect", 
      "ratio", 
      "stroke length", 
      "pairs", 
      "relative strength", 
      "role", 
      "later times", 
      "factors", 
      "differences", 
      "circulation", 
      "shedding", 
      "length", 
      "jet Reynolds number", 
      "number", 
      "patterns", 
      "results", 
      "relative position", 
      "vortex rings", 
      "ring", 
      "time", 
      "conditions", 
      "addition", 
      "characteristics", 
      "strong influence", 
      "influence", 
      "vortex ring formation", 
      "jet ejection", 
      "ejection", 
      "concentric cylinders", 
      "gap ratio", 
      "vorticity", 
      "trajectories", 
      "vortex pair", 
      "flow", 
      "Reynolds number", 
      "range 1", 
      "position", 
      "strength", 
      "vorticity centroids", 
      "vortices", 
      "vortex circulation", 
      "primary vortex", 
      "flow evolution", 
      "principles", 
      "maximal energy", 
      "behavior", 
      "counter-rotating vortex rings", 
      "cylinder", 
      "centroid", 
      "initial vortex configuration", 
      "vortex configurations", 
      "configuration", 
      "Kelvin\u2013Benjamin variational principle", 
      "variational principle", 
      "energy", 
      "counter-rotating vortex ring formation", 
      "transient jet ejection", 
      "cylinder gap ratio", 
      "jet stroke length", 
      "axisymmetric vortex pair", 
      "characteristic flow evolution patterns", 
      "flow evolution patterns", 
      "long-time flow evolution"
    ], 
    "name": "Formation and behavior of counter-rotating vortex rings", 
    "pagination": "369-390", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084019034"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00162-017-0425-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00162-017-0425-1", 
      "https://app.dimensions.ai/details/publication/pub.1084019034"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_733.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00162-017-0425-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00162-017-0425-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00162-017-0425-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00162-017-0425-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00162-017-0425-1'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      22 PREDICATES      98 URIs      85 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00162-017-0425-1 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nd0b9340901274ee98c04964419767cf4
4 schema:citation sg:pub.10.1007/978-3-642-98037-4
5 sg:pub.10.1007/978-94-011-0249-0_4
6 sg:pub.10.1007/bf01597484
7 sg:pub.10.1007/s11012-008-9179-6
8 sg:pub.10.1134/s1560354713010036
9 schema:datePublished 2017-03-02
10 schema:datePublishedReg 2017-03-02
11 schema:description Concentric, counter-rotating vortex ring formation by transient jet ejection between concentric cylinders was studied numerically to determine the effects of cylinder gap ratio, ΔRR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\Delta R}{R}$$\end{document}, and jet stroke length-to-gap ratio, LΔR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{L}{\Delta R}$$\end{document}, on the evolution of the vorticity and the trajectories of the resulting axisymmetric vortex pair. The flow was simulated at a jet Reynolds number of 1000 (based on ΔR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta R$$\end{document} and the jet velocity), LΔR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{L}{\Delta R} $$\end{document} in the range 1–20, and ΔRR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\Delta R}{R}$$\end{document} in the range 0.05–0.25. Five characteristic flow evolution patterns were observed and classified based on LΔR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{L}{\Delta R} $$\end{document} and ΔRR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\Delta R}{R}$$\end{document}. The results showed that the relative position, relative strength, and radii of the vortex rings during and soon after formation played a prominent role in the evolution of the trajectories of their vorticity centroids at the later time. The conditions on relative strength of the vortices necessary for them to travel together as a pair following formation were studied, and factors affecting differences in vortex circulation following formation were investigated. In addition to the characteristics of the primary vortices, the stopping vortices had a strong influence on the initial vortex configuration and effected the long-time flow evolution at low LΔR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{L}{\Delta R}$$\end{document} and small ΔRR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\Delta R}{R}$$\end{document}. For long LΔR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{L}{\Delta R} $$\end{document} and small ΔRR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\Delta R}{R}$$\end{document}, shedding of vorticity was sometimes observed and this shedding was related to the Kelvin–Benjamin variational principle of maximal energy for steadily translating vortex rings.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N908ddcd751494d718673bf55805d1d0d
16 Nd39d411bb0ad4d28b9b39a21979b8586
17 sg:journal.1052938
18 schema:keywords Kelvin–Benjamin variational principle
19 Reynolds number
20 addition
21 axisymmetric vortex pair
22 behavior
23 centroid
24 characteristic flow evolution patterns
25 characteristics
26 circulation
27 concentric cylinders
28 conditions
29 configuration
30 counter-rotating vortex ring formation
31 counter-rotating vortex rings
32 cylinder
33 cylinder gap ratio
34 differences
35 effect
36 ejection
37 energy
38 evolution
39 evolution patterns
40 factors
41 flow
42 flow evolution
43 flow evolution patterns
44 formation
45 gap ratio
46 influence
47 initial vortex configuration
48 jet Reynolds number
49 jet ejection
50 jet stroke length
51 later times
52 length
53 long-time flow evolution
54 maximal energy
55 number
56 pairs
57 patterns
58 position
59 primary vortex
60 principles
61 prominent role
62 range 1
63 ratio
64 relative position
65 relative strength
66 results
67 ring
68 ring formation
69 role
70 shedding
71 strength
72 stroke length
73 strong influence
74 time
75 trajectories
76 transient jet ejection
77 variational principle
78 vortex circulation
79 vortex configurations
80 vortex pair
81 vortex ring formation
82 vortex rings
83 vortices
84 vorticity
85 vorticity centroids
86 schema:name Formation and behavior of counter-rotating vortex rings
87 schema:pagination 369-390
88 schema:productId N8aa63577b7244f38a8b3ea1933ef07c5
89 Nc5c68fff431543feb9fd5a920622c7a6
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084019034
91 https://doi.org/10.1007/s00162-017-0425-1
92 schema:sdDatePublished 2021-12-01T19:39
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher N7cdc66e7ce2f48d0bef82a0e10e62279
95 schema:url https://doi.org/10.1007/s00162-017-0425-1
96 sgo:license sg:explorer/license/
97 sgo:sdDataset articles
98 rdf:type schema:ScholarlyArticle
99 N6cdccefa68f047cb84c3a0262a3bab03 rdf:first sg:person.01352635635.73
100 rdf:rest rdf:nil
101 N7cdc66e7ce2f48d0bef82a0e10e62279 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 N8aa63577b7244f38a8b3ea1933ef07c5 schema:name dimensions_id
104 schema:value pub.1084019034
105 rdf:type schema:PropertyValue
106 N908ddcd751494d718673bf55805d1d0d schema:volumeNumber 31
107 rdf:type schema:PublicationVolume
108 Nc5c68fff431543feb9fd5a920622c7a6 schema:name doi
109 schema:value 10.1007/s00162-017-0425-1
110 rdf:type schema:PropertyValue
111 Nd0b9340901274ee98c04964419767cf4 rdf:first sg:person.010174222073.63
112 rdf:rest N6cdccefa68f047cb84c3a0262a3bab03
113 Nd39d411bb0ad4d28b9b39a21979b8586 schema:issueNumber 4
114 rdf:type schema:PublicationIssue
115 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
116 schema:name Engineering
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
119 schema:name Interdisciplinary Engineering
120 rdf:type schema:DefinedTerm
121 sg:grant.3129612 http://pending.schema.org/fundedItem sg:pub.10.1007/s00162-017-0425-1
122 rdf:type schema:MonetaryGrant
123 sg:journal.1052938 schema:issn 0935-4964
124 1432-2250
125 schema:name Theoretical and Computational Fluid Dynamics
126 schema:publisher Springer Nature
127 rdf:type schema:Periodical
128 sg:person.010174222073.63 schema:affiliation grid-institutes:grid.470935.c
129 schema:familyName Sadri
130 schema:givenName V.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010174222073.63
132 rdf:type schema:Person
133 sg:person.01352635635.73 schema:affiliation grid-institutes:grid.263864.d
134 schema:familyName Krueger
135 schema:givenName P. S.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352635635.73
137 rdf:type schema:Person
138 sg:pub.10.1007/978-3-642-98037-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109711510
139 https://doi.org/10.1007/978-3-642-98037-4
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/978-94-011-0249-0_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004657538
142 https://doi.org/10.1007/978-94-011-0249-0_4
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/bf01597484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038440835
145 https://doi.org/10.1007/bf01597484
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s11012-008-9179-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006804239
148 https://doi.org/10.1007/s11012-008-9179-6
149 rdf:type schema:CreativeWork
150 sg:pub.10.1134/s1560354713010036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046303907
151 https://doi.org/10.1134/s1560354713010036
152 rdf:type schema:CreativeWork
153 grid-institutes:grid.263864.d schema:alternateName Southern Methodist University, 75275, Dallas, TX, USA
154 schema:name Southern Methodist University, 75275, Dallas, TX, USA
155 rdf:type schema:Organization
156 grid-institutes:grid.470935.c schema:alternateName Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 30332, Atlanta, GA, USA
157 schema:name Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 30332, Atlanta, GA, USA
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...