Rounding errors may be beneficial for simulations of atmospheric flow: results from the forced 1D Burgers equation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-08

AUTHORS

Peter D. Düben, Stamen I. Dolaptchiev

ABSTRACT

Inexact hardware can reduce computational cost, due to a reduced energy demand and an increase in performance, and can therefore allow higher-resolution simulations of the atmosphere within the same budget for computation. We investigate the use of emulated inexact hardware for a model of the randomly forced 1D Burgers equation with stochastic sub-grid-scale parametrisation. Results show that numerical precision can be reduced to only 12 bits in the significand of floating-point numbers—instead of 52 bits for double precision—with no serious degradation in results for all diagnostics considered. Simulations that use inexact hardware on a grid with higher spatial resolution show results that are significantly better compared to simulations in double precision on a coarser grid at similar estimated computing cost. In the second half of the paper, we compare the forcing due to rounding errors to the stochastic forcing of the stochastic parametrisation scheme that is used to represent sub-grid-scale variability in the standard model setup. We argue that stochastic forcings of stochastic parametrisation schemes can provide a first guess for the upper limit of the magnitude of rounding errors of inexact hardware that can be tolerated by model simulations and suggest that rounding errors can be hidden in the distribution of the stochastic forcing. We present an idealised model setup that replaces the expensive stochastic forcing of the stochastic parametrisation scheme with an engineered rounding error forcing and provides results of similar quality. The engineered rounding error forcing can be used to create a forecast ensemble of similar spread compared to an ensemble based on the stochastic forcing. We conclude that rounding errors are not necessarily degrading the quality of model simulations. Instead, they can be beneficial for the representation of sub-grid-scale variability. More... »

PAGES

311-328

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00162-015-0355-8

DOI

http://dx.doi.org/10.1007/s00162-015-0355-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005557772


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u00fcben", 
        "givenName": "Peter D.", 
        "id": "sg:person.016626214005.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016626214005.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Goethe University Frankfurt", 
          "id": "https://www.grid.ac/institutes/grid.7839.5", 
          "name": [
            "Institut f\u00fcr Atmosph\u00e4re und Umwelt, Johann Wolfgang Goethe-Universit\u00e4t Frankfurt/Main, Frankfurt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dolaptchiev", 
        "givenName": "Stamen I.", 
        "id": "sg:person.0627315621.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627315621.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/2008jas2754.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000179027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2013.0281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002620788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008jas2677.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007489926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008jas2566.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007862618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.1923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007919841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.49712757202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008717865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2153-3490.1976.tb00696.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010935631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2153-3490.1976.tb00696.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010935631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jas3438.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014130458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1256/qj.04.106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014475004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1256/qj.04.106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014475004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/951710.951712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019477095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2007jas2263.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027164032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.2108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031534401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2013.10.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033557313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.49712556006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042901176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.49712556006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042901176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/mwr-d-14-00110.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046133577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.1014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049232219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00162-012-0270-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052576446", 
          "https://doi.org/10.1007/s00162-012-0270-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00162-012-0270-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052576446", 
          "https://doi.org/10.1007/s00162-012-0270-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/19/4/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059109500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/19/4/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059109500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tc.2005.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061534089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tc.2005.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061534089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/cms.2013.v11.n3.a5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072459141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/aspdac.2010.5419690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093418008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/fpl.2013.6645508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094310519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/saahpc.2012.8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095490765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/date.2011.5763130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1097407035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/date.2011.5763130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1097407035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/date.2010.5457181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1097643874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/date.2010.5457181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1097643874"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-08", 
    "datePublishedReg": "2015-08-01", 
    "description": "Inexact hardware can reduce computational cost, due to a reduced energy demand and an increase in performance, and can therefore allow higher-resolution simulations of the atmosphere within the same budget for computation. We investigate the use of emulated inexact hardware for a model of the randomly forced 1D Burgers equation with stochastic sub-grid-scale parametrisation. Results show that numerical precision can be reduced to only 12 bits in the significand of floating-point numbers\u2014instead of 52 bits for double precision\u2014with no serious degradation in results for all diagnostics considered. Simulations that use inexact hardware on a grid with higher spatial resolution show results that are significantly better compared to simulations in double precision on a coarser grid at similar estimated computing cost. In the second half of the paper, we compare the forcing due to rounding errors to the stochastic forcing of the stochastic parametrisation scheme that is used to represent sub-grid-scale variability in the standard model setup. We argue that stochastic forcings of stochastic parametrisation schemes can provide a first guess for the upper limit of the magnitude of rounding errors of inexact hardware that can be tolerated by model simulations and suggest that rounding errors can be hidden in the distribution of the stochastic forcing. We present an idealised model setup that replaces the expensive stochastic forcing of the stochastic parametrisation scheme with an engineered rounding error forcing and provides results of similar quality. The engineered rounding error forcing can be used to create a forecast ensemble of similar spread compared to an ensemble based on the stochastic forcing. We conclude that rounding errors are not necessarily degrading the quality of model simulations. Instead, they can be beneficial for the representation of sub-grid-scale variability.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00162-015-0355-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052938", 
        "issn": [
          "0935-4964", 
          "1432-2250"
        ], 
        "name": "Theoretical and Computational Fluid Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Rounding errors may be beneficial for simulations of atmospheric flow: results from the forced 1D Burgers equation", 
    "pagination": "311-328", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1a7ac5374e1c3b4d312cb268fde449f35377c4875967515b9609f1adb3987bf5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00162-015-0355-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005557772"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00162-015-0355-8", 
      "https://app.dimensions.ai/details/publication/pub.1005557772"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89801_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00162-015-0355-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00162-015-0355-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00162-015-0355-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00162-015-0355-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00162-015-0355-8'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00162-015-0355-8 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Na394ab63e00e4b86be160fd7c8d2a463
4 schema:citation sg:pub.10.1007/s00162-012-0270-1
5 https://doi.org/10.1002/cpa.1014
6 https://doi.org/10.1002/qj.1923
7 https://doi.org/10.1002/qj.2108
8 https://doi.org/10.1002/qj.49712556006
9 https://doi.org/10.1002/qj.49712757202
10 https://doi.org/10.1016/j.jcp.2013.10.042
11 https://doi.org/10.1088/0951-7715/19/4/001
12 https://doi.org/10.1098/rsta.2013.0281
13 https://doi.org/10.1109/aspdac.2010.5419690
14 https://doi.org/10.1109/date.2010.5457181
15 https://doi.org/10.1109/date.2011.5763130
16 https://doi.org/10.1109/fpl.2013.6645508
17 https://doi.org/10.1109/saahpc.2012.8
18 https://doi.org/10.1109/tc.2005.145
19 https://doi.org/10.1111/j.2153-3490.1976.tb00696.x
20 https://doi.org/10.1145/951710.951712
21 https://doi.org/10.1175/2007jas2263.1
22 https://doi.org/10.1175/2008jas2566.1
23 https://doi.org/10.1175/2008jas2677.1
24 https://doi.org/10.1175/2008jas2754.1
25 https://doi.org/10.1175/jas3438.1
26 https://doi.org/10.1175/mwr-d-14-00110.1
27 https://doi.org/10.1256/qj.04.106
28 https://doi.org/10.4310/cms.2013.v11.n3.a5
29 schema:datePublished 2015-08
30 schema:datePublishedReg 2015-08-01
31 schema:description Inexact hardware can reduce computational cost, due to a reduced energy demand and an increase in performance, and can therefore allow higher-resolution simulations of the atmosphere within the same budget for computation. We investigate the use of emulated inexact hardware for a model of the randomly forced 1D Burgers equation with stochastic sub-grid-scale parametrisation. Results show that numerical precision can be reduced to only 12 bits in the significand of floating-point numbers—instead of 52 bits for double precision—with no serious degradation in results for all diagnostics considered. Simulations that use inexact hardware on a grid with higher spatial resolution show results that are significantly better compared to simulations in double precision on a coarser grid at similar estimated computing cost. In the second half of the paper, we compare the forcing due to rounding errors to the stochastic forcing of the stochastic parametrisation scheme that is used to represent sub-grid-scale variability in the standard model setup. We argue that stochastic forcings of stochastic parametrisation schemes can provide a first guess for the upper limit of the magnitude of rounding errors of inexact hardware that can be tolerated by model simulations and suggest that rounding errors can be hidden in the distribution of the stochastic forcing. We present an idealised model setup that replaces the expensive stochastic forcing of the stochastic parametrisation scheme with an engineered rounding error forcing and provides results of similar quality. The engineered rounding error forcing can be used to create a forecast ensemble of similar spread compared to an ensemble based on the stochastic forcing. We conclude that rounding errors are not necessarily degrading the quality of model simulations. Instead, they can be beneficial for the representation of sub-grid-scale variability.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N343716f0db114258920ec32adbf695c6
36 N49592277f63d47eabf1c25c478122a3e
37 sg:journal.1052938
38 schema:name Rounding errors may be beneficial for simulations of atmospheric flow: results from the forced 1D Burgers equation
39 schema:pagination 311-328
40 schema:productId N2c06a365eacc441a846d82e57b8094da
41 N2f7597e1a11c41eeb69d652711f7fc01
42 Nae410ba158ee4654a71a039808442d7f
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005557772
44 https://doi.org/10.1007/s00162-015-0355-8
45 schema:sdDatePublished 2019-04-11T09:55
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N82407dc9ea894f0fa92423004373ce70
48 schema:url https://link.springer.com/10.1007%2Fs00162-015-0355-8
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N2c06a365eacc441a846d82e57b8094da schema:name doi
53 schema:value 10.1007/s00162-015-0355-8
54 rdf:type schema:PropertyValue
55 N2f7597e1a11c41eeb69d652711f7fc01 schema:name readcube_id
56 schema:value 1a7ac5374e1c3b4d312cb268fde449f35377c4875967515b9609f1adb3987bf5
57 rdf:type schema:PropertyValue
58 N343716f0db114258920ec32adbf695c6 schema:volumeNumber 29
59 rdf:type schema:PublicationVolume
60 N49592277f63d47eabf1c25c478122a3e schema:issueNumber 4
61 rdf:type schema:PublicationIssue
62 N82407dc9ea894f0fa92423004373ce70 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Na28fe76a728144b8b0edce4a81591078 rdf:first sg:person.0627315621.23
65 rdf:rest rdf:nil
66 Na394ab63e00e4b86be160fd7c8d2a463 rdf:first sg:person.016626214005.51
67 rdf:rest Na28fe76a728144b8b0edce4a81591078
68 Nae410ba158ee4654a71a039808442d7f schema:name dimensions_id
69 schema:value pub.1005557772
70 rdf:type schema:PropertyValue
71 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
72 schema:name Mathematical Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
75 schema:name Statistics
76 rdf:type schema:DefinedTerm
77 sg:journal.1052938 schema:issn 0935-4964
78 1432-2250
79 schema:name Theoretical and Computational Fluid Dynamics
80 rdf:type schema:Periodical
81 sg:person.016626214005.51 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
82 schema:familyName Düben
83 schema:givenName Peter D.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016626214005.51
85 rdf:type schema:Person
86 sg:person.0627315621.23 schema:affiliation https://www.grid.ac/institutes/grid.7839.5
87 schema:familyName Dolaptchiev
88 schema:givenName Stamen I.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627315621.23
90 rdf:type schema:Person
91 sg:pub.10.1007/s00162-012-0270-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052576446
92 https://doi.org/10.1007/s00162-012-0270-1
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1002/cpa.1014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049232219
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1002/qj.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007919841
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1002/qj.2108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031534401
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1002/qj.49712556006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042901176
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1002/qj.49712757202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008717865
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.jcp.2013.10.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033557313
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1088/0951-7715/19/4/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059109500
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1098/rsta.2013.0281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002620788
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/aspdac.2010.5419690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093418008
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/date.2010.5457181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1097643874
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/date.2011.5763130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1097407035
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/fpl.2013.6645508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094310519
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/saahpc.2012.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095490765
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/tc.2005.145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061534089
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1111/j.2153-3490.1976.tb00696.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010935631
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1145/951710.951712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019477095
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1175/2007jas2263.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027164032
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1175/2008jas2566.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007862618
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1175/2008jas2677.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007489926
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1175/2008jas2754.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000179027
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1175/jas3438.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014130458
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1175/mwr-d-14-00110.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046133577
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1256/qj.04.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014475004
139 rdf:type schema:CreativeWork
140 https://doi.org/10.4310/cms.2013.v11.n3.a5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072459141
141 rdf:type schema:CreativeWork
142 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
143 schema:name Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, UK
144 rdf:type schema:Organization
145 https://www.grid.ac/institutes/grid.7839.5 schema:alternateName Goethe University Frankfurt
146 schema:name Institut für Atmosphäre und Umwelt, Johann Wolfgang Goethe-Universität Frankfurt/Main, Frankfurt, Germany
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...