Theoretical investigation of some thermal effects in turbulence modeling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-11

AUTHORS

Lionel Mathelin, Françoise Bataille, Ye Zhou

ABSTRACT

Fluid compressibility effects arising from thermal rather than dynamical aspects are theoretically investigated in the framework of turbulent flows. The Mach number is considered low and not to induce significant compressibility effects which here occur due to a very high thermal gradient within the flowfield. With the use of the Two-Scale Direct Interaction Approximation approach, essential turbulent correlations are derived in a one-point one-time framework. In the low velocity gradient limit, they are shown to directly depend on the temperature gradient, assumed large. The impact of thermal effects onto the transport equations of the turbulent kinetic energy and dissipation rate is also investigated, together with the transport equation for both the density and the internal energy variance. More... »

PAGES

471-483

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00162-008-0087-0

DOI

http://dx.doi.org/10.1007/s00162-008-0087-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023994529


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Informatique pour la M\u00e9canique et les Sciences de l'Ing\u00e9nieur", 
          "id": "https://www.grid.ac/institutes/grid.420043.1", 
          "name": [
            "LIMSI-CNRS, BP 133, 91403, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mathelin", 
        "givenName": "Lionel", 
        "id": "sg:person.012331566640.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012331566640.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire Proc\u00e9d\u00e9s, Mat\u00e9riaux et Energie Solaire", 
          "id": "https://www.grid.ac/institutes/grid.463730.5", 
          "name": [
            "PROMES-CNRS, Tecnosud, 66100, Perpignan, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bataille", 
        "givenName": "Fran\u00e7oise", 
        "id": "sg:person.011337404677.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011337404677.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Livermore National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.250008.f", 
          "name": [
            "Lawrence Livermore National Lab, 94551, Livermore, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Ye", 
        "id": "sg:person.015312257023.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312257023.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1146/annurev.fl.23.010191.000543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036073172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.1991-524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051396639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112081001705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053980471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112059000362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054025706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112059000362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054025706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112097006289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054080481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1324005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057694788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1761271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057816333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.868754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058120929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.869386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058121544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.869412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058121570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.869413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058121571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.870055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058122200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.870171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058122308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.46.3292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060486103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.46.3292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060486103"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-11", 
    "datePublishedReg": "2008-11-01", 
    "description": "Fluid compressibility effects arising from thermal rather than dynamical aspects are theoretically investigated in the framework of turbulent flows. The Mach number is considered low and not to induce significant compressibility effects which here occur due to a very high thermal gradient within the flowfield. With the use of the Two-Scale Direct Interaction Approximation approach, essential turbulent correlations are derived in a one-point one-time framework. In the low velocity gradient limit, they are shown to directly depend on the temperature gradient, assumed large. The impact of thermal effects onto the transport equations of the turbulent kinetic energy and dissipation rate is also investigated, together with the transport equation for both the density and the internal energy variance.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00162-008-0087-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052938", 
        "issn": [
          "0935-4964", 
          "1432-2250"
        ], 
        "name": "Theoretical and Computational Fluid Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Theoretical investigation of some thermal effects in turbulence modeling", 
    "pagination": "471-483", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "725022d6ae72eaf86f033296f9f4976706ace8be1bfe310bda50a25cda123228"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00162-008-0087-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023994529"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00162-008-0087-0", 
      "https://app.dimensions.ai/details/publication/pub.1023994529"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13099_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00162-008-0087-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00162-008-0087-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00162-008-0087-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00162-008-0087-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00162-008-0087-0'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00162-008-0087-0 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nd09cdee5cf6e4e9fa4b2b85a8f4cab97
4 schema:citation https://doi.org/10.1017/s0022112059000362
5 https://doi.org/10.1017/s0022112081001705
6 https://doi.org/10.1017/s0022112097006289
7 https://doi.org/10.1063/1.1324005
8 https://doi.org/10.1063/1.1761271
9 https://doi.org/10.1063/1.868754
10 https://doi.org/10.1063/1.869386
11 https://doi.org/10.1063/1.869412
12 https://doi.org/10.1063/1.869413
13 https://doi.org/10.1063/1.870055
14 https://doi.org/10.1063/1.870171
15 https://doi.org/10.1103/physreva.46.3292
16 https://doi.org/10.1146/annurev.fl.23.010191.000543
17 https://doi.org/10.2514/6.1991-524
18 schema:datePublished 2008-11
19 schema:datePublishedReg 2008-11-01
20 schema:description Fluid compressibility effects arising from thermal rather than dynamical aspects are theoretically investigated in the framework of turbulent flows. The Mach number is considered low and not to induce significant compressibility effects which here occur due to a very high thermal gradient within the flowfield. With the use of the Two-Scale Direct Interaction Approximation approach, essential turbulent correlations are derived in a one-point one-time framework. In the low velocity gradient limit, they are shown to directly depend on the temperature gradient, assumed large. The impact of thermal effects onto the transport equations of the turbulent kinetic energy and dissipation rate is also investigated, together with the transport equation for both the density and the internal energy variance.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf Ne9f0c3161be443e68b2cb31294ff5bdd
25 Nfe6822d5e61349cfb6662431a9582664
26 sg:journal.1052938
27 schema:name Theoretical investigation of some thermal effects in turbulence modeling
28 schema:pagination 471-483
29 schema:productId N86cd9fc1d6c2472aa9e1293a5af70337
30 Ncb39824ea494460bbaa536e254fda1ae
31 Ne8d2e65a8ed64fa9bc8df324f63e6336
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023994529
33 https://doi.org/10.1007/s00162-008-0087-0
34 schema:sdDatePublished 2019-04-11T14:32
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N78de3f55a020400e8c9dc85937cd1c88
37 schema:url https://link.springer.com/10.1007%2Fs00162-008-0087-0
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N280c456796e549dc8956efd7a159dbdb rdf:first sg:person.015312257023.13
42 rdf:rest rdf:nil
43 N78de3f55a020400e8c9dc85937cd1c88 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N86cd9fc1d6c2472aa9e1293a5af70337 schema:name readcube_id
46 schema:value 725022d6ae72eaf86f033296f9f4976706ace8be1bfe310bda50a25cda123228
47 rdf:type schema:PropertyValue
48 Ncb39824ea494460bbaa536e254fda1ae schema:name doi
49 schema:value 10.1007/s00162-008-0087-0
50 rdf:type schema:PropertyValue
51 Nd09cdee5cf6e4e9fa4b2b85a8f4cab97 rdf:first sg:person.012331566640.74
52 rdf:rest Nf0efad097000457abb6e364012e64661
53 Ne8d2e65a8ed64fa9bc8df324f63e6336 schema:name dimensions_id
54 schema:value pub.1023994529
55 rdf:type schema:PropertyValue
56 Ne9f0c3161be443e68b2cb31294ff5bdd schema:volumeNumber 22
57 rdf:type schema:PublicationVolume
58 Nf0efad097000457abb6e364012e64661 rdf:first sg:person.011337404677.07
59 rdf:rest N280c456796e549dc8956efd7a159dbdb
60 Nfe6822d5e61349cfb6662431a9582664 schema:issueNumber 6
61 rdf:type schema:PublicationIssue
62 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
63 schema:name Engineering
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
66 schema:name Interdisciplinary Engineering
67 rdf:type schema:DefinedTerm
68 sg:journal.1052938 schema:issn 0935-4964
69 1432-2250
70 schema:name Theoretical and Computational Fluid Dynamics
71 rdf:type schema:Periodical
72 sg:person.011337404677.07 schema:affiliation https://www.grid.ac/institutes/grid.463730.5
73 schema:familyName Bataille
74 schema:givenName Françoise
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011337404677.07
76 rdf:type schema:Person
77 sg:person.012331566640.74 schema:affiliation https://www.grid.ac/institutes/grid.420043.1
78 schema:familyName Mathelin
79 schema:givenName Lionel
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012331566640.74
81 rdf:type schema:Person
82 sg:person.015312257023.13 schema:affiliation https://www.grid.ac/institutes/grid.250008.f
83 schema:familyName Zhou
84 schema:givenName Ye
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312257023.13
86 rdf:type schema:Person
87 https://doi.org/10.1017/s0022112059000362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054025706
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1017/s0022112081001705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053980471
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1017/s0022112097006289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054080481
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1063/1.1324005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057694788
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1063/1.1761271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057816333
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1063/1.868754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058120929
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1063/1.869386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058121544
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1063/1.869412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058121570
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1063/1.869413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058121571
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1063/1.870055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058122200
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1063/1.870171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058122308
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physreva.46.3292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060486103
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1146/annurev.fl.23.010191.000543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036073172
112 rdf:type schema:CreativeWork
113 https://doi.org/10.2514/6.1991-524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051396639
114 rdf:type schema:CreativeWork
115 https://www.grid.ac/institutes/grid.250008.f schema:alternateName Lawrence Livermore National Laboratory
116 schema:name Lawrence Livermore National Lab, 94551, Livermore, CA, USA
117 rdf:type schema:Organization
118 https://www.grid.ac/institutes/grid.420043.1 schema:alternateName Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur
119 schema:name LIMSI-CNRS, BP 133, 91403, Orsay, France
120 rdf:type schema:Organization
121 https://www.grid.ac/institutes/grid.463730.5 schema:alternateName Laboratoire Procédés, Matériaux et Energie Solaire
122 schema:name PROMES-CNRS, Tecnosud, 66100, Perpignan, France
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...