Theoretical investigation of some thermal effects in turbulence modeling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-11

AUTHORS

Lionel Mathelin, Françoise Bataille, Ye Zhou

ABSTRACT

Fluid compressibility effects arising from thermal rather than dynamical aspects are theoretically investigated in the framework of turbulent flows. The Mach number is considered low and not to induce significant compressibility effects which here occur due to a very high thermal gradient within the flowfield. With the use of the Two-Scale Direct Interaction Approximation approach, essential turbulent correlations are derived in a one-point one-time framework. In the low velocity gradient limit, they are shown to directly depend on the temperature gradient, assumed large. The impact of thermal effects onto the transport equations of the turbulent kinetic energy and dissipation rate is also investigated, together with the transport equation for both the density and the internal energy variance. More... »

PAGES

471-483

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00162-008-0087-0

DOI

http://dx.doi.org/10.1007/s00162-008-0087-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023994529


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Informatique pour la M\u00e9canique et les Sciences de l'Ing\u00e9nieur", 
          "id": "https://www.grid.ac/institutes/grid.420043.1", 
          "name": [
            "LIMSI-CNRS, BP 133, 91403, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mathelin", 
        "givenName": "Lionel", 
        "id": "sg:person.012331566640.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012331566640.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire Proc\u00e9d\u00e9s, Mat\u00e9riaux et Energie Solaire", 
          "id": "https://www.grid.ac/institutes/grid.463730.5", 
          "name": [
            "PROMES-CNRS, Tecnosud, 66100, Perpignan, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bataille", 
        "givenName": "Fran\u00e7oise", 
        "id": "sg:person.011337404677.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011337404677.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Livermore National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.250008.f", 
          "name": [
            "Lawrence Livermore National Lab, 94551, Livermore, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Ye", 
        "id": "sg:person.015312257023.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312257023.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1146/annurev.fl.23.010191.000543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036073172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.1991-524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051396639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112081001705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053980471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112059000362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054025706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112059000362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054025706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112097006289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054080481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1324005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057694788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1761271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057816333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.868754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058120929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.869386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058121544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.869412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058121570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.869413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058121571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.870055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058122200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.870171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058122308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.46.3292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060486103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.46.3292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060486103"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-11", 
    "datePublishedReg": "2008-11-01", 
    "description": "Fluid compressibility effects arising from thermal rather than dynamical aspects are theoretically investigated in the framework of turbulent flows. The Mach number is considered low and not to induce significant compressibility effects which here occur due to a very high thermal gradient within the flowfield. With the use of the Two-Scale Direct Interaction Approximation approach, essential turbulent correlations are derived in a one-point one-time framework. In the low velocity gradient limit, they are shown to directly depend on the temperature gradient, assumed large. The impact of thermal effects onto the transport equations of the turbulent kinetic energy and dissipation rate is also investigated, together with the transport equation for both the density and the internal energy variance.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00162-008-0087-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052938", 
        "issn": [
          "0935-4964", 
          "1432-2250"
        ], 
        "name": "Theoretical and Computational Fluid Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Theoretical investigation of some thermal effects in turbulence modeling", 
    "pagination": "471-483", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "725022d6ae72eaf86f033296f9f4976706ace8be1bfe310bda50a25cda123228"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00162-008-0087-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023994529"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00162-008-0087-0", 
      "https://app.dimensions.ai/details/publication/pub.1023994529"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13099_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00162-008-0087-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00162-008-0087-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00162-008-0087-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00162-008-0087-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00162-008-0087-0'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00162-008-0087-0 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Ne70ac3423e3c4d2b8c7126f6a389c1d4
4 schema:citation https://doi.org/10.1017/s0022112059000362
5 https://doi.org/10.1017/s0022112081001705
6 https://doi.org/10.1017/s0022112097006289
7 https://doi.org/10.1063/1.1324005
8 https://doi.org/10.1063/1.1761271
9 https://doi.org/10.1063/1.868754
10 https://doi.org/10.1063/1.869386
11 https://doi.org/10.1063/1.869412
12 https://doi.org/10.1063/1.869413
13 https://doi.org/10.1063/1.870055
14 https://doi.org/10.1063/1.870171
15 https://doi.org/10.1103/physreva.46.3292
16 https://doi.org/10.1146/annurev.fl.23.010191.000543
17 https://doi.org/10.2514/6.1991-524
18 schema:datePublished 2008-11
19 schema:datePublishedReg 2008-11-01
20 schema:description Fluid compressibility effects arising from thermal rather than dynamical aspects are theoretically investigated in the framework of turbulent flows. The Mach number is considered low and not to induce significant compressibility effects which here occur due to a very high thermal gradient within the flowfield. With the use of the Two-Scale Direct Interaction Approximation approach, essential turbulent correlations are derived in a one-point one-time framework. In the low velocity gradient limit, they are shown to directly depend on the temperature gradient, assumed large. The impact of thermal effects onto the transport equations of the turbulent kinetic energy and dissipation rate is also investigated, together with the transport equation for both the density and the internal energy variance.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf Nc68c9b34c4cd41a18a572cd42e2010a4
25 Ncc9dae545f83479f900bdf71c94dc4b5
26 sg:journal.1052938
27 schema:name Theoretical investigation of some thermal effects in turbulence modeling
28 schema:pagination 471-483
29 schema:productId N249a22c945854823a0e0d8634b1a67a0
30 N52bb9562ff8c4b7c8ca2aa042fa7f48a
31 N675f7a86160d48498bbfc8bc70592971
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023994529
33 https://doi.org/10.1007/s00162-008-0087-0
34 schema:sdDatePublished 2019-04-11T14:32
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N3806a53e001546869ccc0444fe97a6ae
37 schema:url https://link.springer.com/10.1007%2Fs00162-008-0087-0
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N249a22c945854823a0e0d8634b1a67a0 schema:name readcube_id
42 schema:value 725022d6ae72eaf86f033296f9f4976706ace8be1bfe310bda50a25cda123228
43 rdf:type schema:PropertyValue
44 N25eeb149665b4c5fa0f7bda5d48c29ec rdf:first sg:person.015312257023.13
45 rdf:rest rdf:nil
46 N3806a53e001546869ccc0444fe97a6ae schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N3b3708acd8ce4120b6420ce0f5ca3a3f rdf:first sg:person.011337404677.07
49 rdf:rest N25eeb149665b4c5fa0f7bda5d48c29ec
50 N52bb9562ff8c4b7c8ca2aa042fa7f48a schema:name doi
51 schema:value 10.1007/s00162-008-0087-0
52 rdf:type schema:PropertyValue
53 N675f7a86160d48498bbfc8bc70592971 schema:name dimensions_id
54 schema:value pub.1023994529
55 rdf:type schema:PropertyValue
56 Nc68c9b34c4cd41a18a572cd42e2010a4 schema:volumeNumber 22
57 rdf:type schema:PublicationVolume
58 Ncc9dae545f83479f900bdf71c94dc4b5 schema:issueNumber 6
59 rdf:type schema:PublicationIssue
60 Ne70ac3423e3c4d2b8c7126f6a389c1d4 rdf:first sg:person.012331566640.74
61 rdf:rest N3b3708acd8ce4120b6420ce0f5ca3a3f
62 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
63 schema:name Engineering
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
66 schema:name Interdisciplinary Engineering
67 rdf:type schema:DefinedTerm
68 sg:journal.1052938 schema:issn 0935-4964
69 1432-2250
70 schema:name Theoretical and Computational Fluid Dynamics
71 rdf:type schema:Periodical
72 sg:person.011337404677.07 schema:affiliation https://www.grid.ac/institutes/grid.463730.5
73 schema:familyName Bataille
74 schema:givenName Françoise
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011337404677.07
76 rdf:type schema:Person
77 sg:person.012331566640.74 schema:affiliation https://www.grid.ac/institutes/grid.420043.1
78 schema:familyName Mathelin
79 schema:givenName Lionel
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012331566640.74
81 rdf:type schema:Person
82 sg:person.015312257023.13 schema:affiliation https://www.grid.ac/institutes/grid.250008.f
83 schema:familyName Zhou
84 schema:givenName Ye
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312257023.13
86 rdf:type schema:Person
87 https://doi.org/10.1017/s0022112059000362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054025706
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1017/s0022112081001705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053980471
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1017/s0022112097006289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054080481
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1063/1.1324005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057694788
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1063/1.1761271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057816333
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1063/1.868754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058120929
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1063/1.869386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058121544
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1063/1.869412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058121570
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1063/1.869413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058121571
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1063/1.870055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058122200
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1063/1.870171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058122308
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physreva.46.3292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060486103
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1146/annurev.fl.23.010191.000543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036073172
112 rdf:type schema:CreativeWork
113 https://doi.org/10.2514/6.1991-524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051396639
114 rdf:type schema:CreativeWork
115 https://www.grid.ac/institutes/grid.250008.f schema:alternateName Lawrence Livermore National Laboratory
116 schema:name Lawrence Livermore National Lab, 94551, Livermore, CA, USA
117 rdf:type schema:Organization
118 https://www.grid.ac/institutes/grid.420043.1 schema:alternateName Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur
119 schema:name LIMSI-CNRS, BP 133, 91403, Orsay, France
120 rdf:type schema:Organization
121 https://www.grid.ac/institutes/grid.463730.5 schema:alternateName Laboratoire Procédés, Matériaux et Energie Solaire
122 schema:name PROMES-CNRS, Tecnosud, 66100, Perpignan, France
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...