Hydromagnetic convection in a rotating annulus with an azimuthal magnetic field View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-11

AUTHORS

E. Kurt, F.H. Busse, W. Pesch

ABSTRACT

The problem of convection induced by radial buoyancy in an electrically conducting fluid contained by a rotating cylindrical annulus (angular frequency, Ω) in the presence of a homogeneous magnetic field (B) in the azimuthal direction is considered. The small gap approximation is used together with rigid cylindrical boundaries. The onset of convection occurs in the form of axial, axisymmetric or oblique rolls. The angle ψ between the roll axis and the axis of rotation depends of the ratio between the Chandrasekhar number, Q∼B2, and the Coriolis number, τ∼Ω. Fully three-dimensional numerical simulations as well as Galerkin representations for roll patterns including the subsequent stability analysis are used in the theoretical investigation. At finite amplitudes, secondary transitions to 3D-hexarolls and to spatio-temporal chaos are found. Overlapping regions of pattern stability exist such that the asymptotically realized state may depend on the initial conditions. More... »

PAGES

251-263

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00162-004-0132-6

DOI

http://dx.doi.org/10.1007/s00162-004-0132-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053659532


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Bayreuth", 
          "id": "https://www.grid.ac/institutes/grid.7384.8", 
          "name": [
            "Institute of Physics, University of Bayreuth, 95440, Bayreuth, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurt", 
        "givenName": "E.", 
        "id": "sg:person.016532223443.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016532223443.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bayreuth", 
          "id": "https://www.grid.ac/institutes/grid.7384.8", 
          "name": [
            "Institute of Physics, University of Bayreuth, 95440, Bayreuth, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Busse", 
        "givenName": "F.H.", 
        "id": "sg:person.016204466064.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016204466064.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bayreuth", 
          "id": "https://www.grid.ac/institutes/grid.7384.8", 
          "name": [
            "Institute of Physics, University of Bayreuth, 95440, Bayreuth, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pesch", 
        "givenName": "W.", 
        "id": "sg:person.01220725157.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220725157.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1098/rspa.1972.0007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025932576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.10.5060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033677792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2789(03)00210-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041841603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2789(03)00210-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041841603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112095003934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053791825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112075002480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053885786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112075002480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053885786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112075002480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053885786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112075002480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053885786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1622949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057726855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.166194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057740219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3058072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057902893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.1853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.1853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815790"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-11", 
    "datePublishedReg": "2004-11-01", 
    "description": "The problem of convection induced by radial buoyancy in an electrically conducting fluid contained by a rotating cylindrical annulus (angular frequency, \u03a9) in the presence of a homogeneous magnetic field (B) in the azimuthal direction is considered. The small gap approximation is used together with rigid cylindrical boundaries. The onset of convection occurs in the form of axial, axisymmetric or oblique rolls. The angle \u03c8 between the roll axis and the axis of rotation depends of the ratio between the Chandrasekhar number, Q\u223cB2, and the Coriolis number, \u03c4\u223c\u03a9. Fully three-dimensional numerical simulations as well as Galerkin representations for roll patterns including the subsequent stability analysis are used in the theoretical investigation. At finite amplitudes, secondary transitions to 3D-hexarolls and to spatio-temporal chaos are found. Overlapping regions of pattern stability exist such that the asymptotically realized state may depend on the initial conditions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00162-004-0132-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052938", 
        "issn": [
          "0935-4964", 
          "1432-2250"
        ], 
        "name": "Theoretical and Computational Fluid Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Hydromagnetic convection in a rotating annulus with an azimuthal magnetic field", 
    "pagination": "251-263", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ff9654d4fbbc047c6d4973baf919f7f40cb0ae4a82f1b2df0552d9d661c95e66"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00162-004-0132-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053659532"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00162-004-0132-6", 
      "https://app.dimensions.ai/details/publication/pub.1053659532"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113641_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00162-004-0132-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00162-004-0132-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00162-004-0132-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00162-004-0132-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00162-004-0132-6'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00162-004-0132-6 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N42957b5e531a4c029238f53b8f1f9c72
4 schema:citation https://doi.org/10.1016/s0167-2789(03)00210-0
5 https://doi.org/10.1017/s0022112075002480
6 https://doi.org/10.1017/s0022112095003934
7 https://doi.org/10.1063/1.1622949
8 https://doi.org/10.1063/1.166194
9 https://doi.org/10.1063/1.3058072
10 https://doi.org/10.1073/pnas.97.10.5060
11 https://doi.org/10.1098/rspa.1972.0007
12 https://doi.org/10.1103/physrevlett.79.1853
13 schema:datePublished 2004-11
14 schema:datePublishedReg 2004-11-01
15 schema:description The problem of convection induced by radial buoyancy in an electrically conducting fluid contained by a rotating cylindrical annulus (angular frequency, Ω) in the presence of a homogeneous magnetic field (B) in the azimuthal direction is considered. The small gap approximation is used together with rigid cylindrical boundaries. The onset of convection occurs in the form of axial, axisymmetric or oblique rolls. The angle ψ between the roll axis and the axis of rotation depends of the ratio between the Chandrasekhar number, Q∼B2, and the Coriolis number, τ∼Ω. Fully three-dimensional numerical simulations as well as Galerkin representations for roll patterns including the subsequent stability analysis are used in the theoretical investigation. At finite amplitudes, secondary transitions to 3D-hexarolls and to spatio-temporal chaos are found. Overlapping regions of pattern stability exist such that the asymptotically realized state may depend on the initial conditions.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf Ne94746ac05e24ec1b9827343390a60cb
20 Nef824b36e1d14b91ba19076632e3188d
21 sg:journal.1052938
22 schema:name Hydromagnetic convection in a rotating annulus with an azimuthal magnetic field
23 schema:pagination 251-263
24 schema:productId N0c45b830fda345ceb3cb104c6376dd19
25 N2720e2ae98db45c7a13bbadc54a449e4
26 Naeda79411f1e4bcd9bd76feb0834a6d9
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053659532
28 https://doi.org/10.1007/s00162-004-0132-6
29 schema:sdDatePublished 2019-04-11T10:29
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N77e1f853aa57466c98a8c4aa79d8ea2f
32 schema:url https://link.springer.com/10.1007%2Fs00162-004-0132-6
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N0c45b830fda345ceb3cb104c6376dd19 schema:name dimensions_id
37 schema:value pub.1053659532
38 rdf:type schema:PropertyValue
39 N2720e2ae98db45c7a13bbadc54a449e4 schema:name doi
40 schema:value 10.1007/s00162-004-0132-6
41 rdf:type schema:PropertyValue
42 N31e067ca26374d73ad02da22f7e8dfe3 rdf:first sg:person.01220725157.16
43 rdf:rest rdf:nil
44 N3500131d461c49b38c875494150eb0f9 rdf:first sg:person.016204466064.21
45 rdf:rest N31e067ca26374d73ad02da22f7e8dfe3
46 N42957b5e531a4c029238f53b8f1f9c72 rdf:first sg:person.016532223443.16
47 rdf:rest N3500131d461c49b38c875494150eb0f9
48 N77e1f853aa57466c98a8c4aa79d8ea2f schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 Naeda79411f1e4bcd9bd76feb0834a6d9 schema:name readcube_id
51 schema:value ff9654d4fbbc047c6d4973baf919f7f40cb0ae4a82f1b2df0552d9d661c95e66
52 rdf:type schema:PropertyValue
53 Ne94746ac05e24ec1b9827343390a60cb schema:issueNumber 2-4
54 rdf:type schema:PublicationIssue
55 Nef824b36e1d14b91ba19076632e3188d schema:volumeNumber 18
56 rdf:type schema:PublicationVolume
57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
58 schema:name Mathematical Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
61 schema:name Numerical and Computational Mathematics
62 rdf:type schema:DefinedTerm
63 sg:journal.1052938 schema:issn 0935-4964
64 1432-2250
65 schema:name Theoretical and Computational Fluid Dynamics
66 rdf:type schema:Periodical
67 sg:person.01220725157.16 schema:affiliation https://www.grid.ac/institutes/grid.7384.8
68 schema:familyName Pesch
69 schema:givenName W.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220725157.16
71 rdf:type schema:Person
72 sg:person.016204466064.21 schema:affiliation https://www.grid.ac/institutes/grid.7384.8
73 schema:familyName Busse
74 schema:givenName F.H.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016204466064.21
76 rdf:type schema:Person
77 sg:person.016532223443.16 schema:affiliation https://www.grid.ac/institutes/grid.7384.8
78 schema:familyName Kurt
79 schema:givenName E.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016532223443.16
81 rdf:type schema:Person
82 https://doi.org/10.1016/s0167-2789(03)00210-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041841603
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1017/s0022112075002480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053885786
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1017/s0022112095003934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053791825
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1063/1.1622949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057726855
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1063/1.166194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057740219
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1063/1.3058072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057902893
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1073/pnas.97.10.5060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033677792
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1098/rspa.1972.0007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025932576
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physrevlett.79.1853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060815790
99 rdf:type schema:CreativeWork
100 https://www.grid.ac/institutes/grid.7384.8 schema:alternateName University of Bayreuth
101 schema:name Institute of Physics, University of Bayreuth, 95440, Bayreuth, Germany
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...