Magnetohydrodynamic 3D slip flow in a suspension of carbon nanotubes over a slendering sheet with heat source/sink View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-05

AUTHORS

R. V. M. S. S. Kiran Kumar, S. Vijaya Kumar Varma, C. S. K. Raju, S. M. Ibrahim, G. Lorenzini, E. Lorenzini

ABSTRACT

Carbon nanotubes are allotropes of carbon with a cylindrical nanostructure. These cylindrical carbon molecules have unusual properties, which are valuable for nanotechnology, electronics, optics and other fields of materials science and technology. With this intention, we investigate the three-dimensional magnetohydrodynamic convective heat and mass transfer of nanofluid over a slendering stretching sheet filled with porous medium and heat source/sink. For balancing the flow, temperature and concentration slip mechanisms are also taken into account. In this investigation simulation performed by mixing the two types of carbon nanotubes, namely single- and multi-walled carbon nanotubes, into water as base fluid. The governing system of partial differential equations is transformed into nonlinear ordinary differential equations which answered by using R–K–Fehlberg-integration scheme. The impact of various pertinent parameters on velocity, temperature and concentration as well as the friction factor coefficient, local Nusselt and local Sherwood number is derived and discussed through graphs and tables for both single- and multi-walled carbon nanotubes cases. It is found that the momentum boundary layer thickness of SWCNTs is thicker than MWCNTs. These results can help us to conclude that SWCNTs are helpful for minimizing the friction between the particles, whereas MWCNTs are helpful for boosting the heat and mass transfer rate. More... »

PAGES

835-851

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00161-017-0563-0

DOI

http://dx.doi.org/10.1007/s00161-017-0563-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084019031


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sri Venkateswara University", 
          "id": "https://www.grid.ac/institutes/grid.412313.6", 
          "name": [
            "Department of Mathematics, Sri Venkateswara University, Tirupati, Andhra Pradesh, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "R. V. M. S. S. Kiran", 
        "id": "sg:person.016344526755.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016344526755.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sri Venkateswara University", 
          "id": "https://www.grid.ac/institutes/grid.412313.6", 
          "name": [
            "Department of Mathematics, Sri Venkateswara University, Tirupati, Andhra Pradesh, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Varma", 
        "givenName": "S. Vijaya Kumar", 
        "id": "sg:person.016422736401.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016422736401.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vellore Institute of Technology University", 
          "id": "https://www.grid.ac/institutes/grid.412813.d", 
          "name": [
            "Department Of Mathematics, VIT University, Vellore, Tamilnadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raju", 
        "givenName": "C. S. K.", 
        "id": "sg:person.010416644153.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010416644153.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "GITAM University", 
          "id": "https://www.grid.ac/institutes/grid.411710.2", 
          "name": [
            "Department of Mathematics, GITAM University, 530045, Visakhapatnam, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ibrahim", 
        "givenName": "S. M.", 
        "id": "sg:person.012744231012.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012744231012.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Parma", 
          "id": "https://www.grid.ac/institutes/grid.10383.39", 
          "name": [
            "Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124, Parma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lorenzini", 
        "givenName": "G.", 
        "id": "sg:person.013714140501.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013714140501.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bologna", 
          "id": "https://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, Viale Risorgimento 2, 40136, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lorenzini", 
        "givenName": "E.", 
        "id": "sg:person.013131232524.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013131232524.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.rser.2011.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001025540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2008.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006315379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2010.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011041761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tca.2008.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011460776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2016.05.078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011576893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/htj.20405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012987744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13204-013-0265-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013138206", 
          "https://doi.org/10.1007/s13204-013-0265-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1060928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013559716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2013.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016019936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aej.2015.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017546013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13204-013-0242-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024236211", 
          "https://doi.org/10.1007/s13204-013-0242-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1469696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025142067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026025479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2015/934367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028036559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compscitech.2009.10.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028223453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2013-13100-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033582524", 
          "https://doi.org/10.1140/epjp/i2013-13100-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physb.2005.07.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035691676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2006.10.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037210267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2016.07.143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040745270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2014.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043231978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050333257", 
          "https://doi.org/10.1038/nmat793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050333257", 
          "https://doi.org/10.1038/nmat793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1613374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057725816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1756680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057815728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnano.2015.2435899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061713341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18869/acadpub.jafm.68.225.24064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084375592"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-05", 
    "datePublishedReg": "2017-05-01", 
    "description": "Carbon nanotubes are allotropes of carbon with a cylindrical nanostructure. These cylindrical carbon molecules have unusual properties, which are valuable for nanotechnology, electronics, optics and other fields of materials science and technology. With this intention, we investigate the three-dimensional magnetohydrodynamic convective heat and mass transfer of nanofluid over a slendering stretching sheet filled with porous medium and heat source/sink. For balancing the flow, temperature and concentration slip mechanisms are also taken into account. In this investigation simulation performed by mixing the two types of carbon nanotubes, namely single- and multi-walled carbon nanotubes, into water as base fluid. The governing system of partial differential equations is transformed into nonlinear ordinary differential equations which answered by using R\u2013K\u2013Fehlberg-integration scheme. The impact of various pertinent parameters on velocity, temperature and concentration as well as the friction factor coefficient, local Nusselt and local Sherwood number is derived and discussed through graphs and tables for both single- and multi-walled carbon nanotubes cases. It is found that the momentum boundary layer thickness of SWCNTs is thicker than MWCNTs. These results can help us to conclude that SWCNTs are helpful for minimizing the friction between the particles, whereas MWCNTs are helpful for boosting the heat and mass transfer rate.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00161-017-0563-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135936", 
        "issn": [
          "0935-1175", 
          "1432-0959"
        ], 
        "name": "Continuum Mechanics and Thermodynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Magnetohydrodynamic 3D slip flow in a suspension of carbon nanotubes over a slendering sheet with heat source/sink", 
    "pagination": "835-851", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a19fed65adc506d4d2e60842860530e3e6158632b442cac252ab252381a6c43a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00161-017-0563-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084019031"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00161-017-0563-0", 
      "https://app.dimensions.ai/details/publication/pub.1084019031"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000599.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00161-017-0563-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00161-017-0563-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00161-017-0563-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00161-017-0563-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00161-017-0563-0'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00161-017-0563-0 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nde2bc449fc244d3aa89f45fd78d020e8
4 schema:citation sg:pub.10.1007/s13204-013-0242-9
5 sg:pub.10.1007/s13204-013-0265-2
6 sg:pub.10.1038/nmat793
7 sg:pub.10.1140/epjp/i2013-13100-7
8 https://doi.org/10.1002/htj.20405
9 https://doi.org/10.1016/j.aej.2015.10.006
10 https://doi.org/10.1016/j.applthermaleng.2008.01.005
11 https://doi.org/10.1016/j.compscitech.2009.10.021
12 https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.029
13 https://doi.org/10.1016/j.ijthermalsci.2010.09.008
14 https://doi.org/10.1016/j.ijthermalsci.2013.04.013
15 https://doi.org/10.1016/j.molliq.2016.05.078
16 https://doi.org/10.1016/j.molliq.2016.07.143
17 https://doi.org/10.1016/j.physb.2005.07.024
18 https://doi.org/10.1016/j.physe.2014.06.004
19 https://doi.org/10.1016/j.rser.2011.02.016
20 https://doi.org/10.1016/j.scriptamat.2006.10.025
21 https://doi.org/10.1016/j.tca.2008.08.001
22 https://doi.org/10.1063/1.1469696
23 https://doi.org/10.1063/1.1613374
24 https://doi.org/10.1063/1.1756680
25 https://doi.org/10.1109/tnano.2015.2435899
26 https://doi.org/10.1126/science.1060928
27 https://doi.org/10.1155/2015/934367
28 https://doi.org/10.18869/acadpub.jafm.68.225.24064
29 schema:datePublished 2017-05
30 schema:datePublishedReg 2017-05-01
31 schema:description Carbon nanotubes are allotropes of carbon with a cylindrical nanostructure. These cylindrical carbon molecules have unusual properties, which are valuable for nanotechnology, electronics, optics and other fields of materials science and technology. With this intention, we investigate the three-dimensional magnetohydrodynamic convective heat and mass transfer of nanofluid over a slendering stretching sheet filled with porous medium and heat source/sink. For balancing the flow, temperature and concentration slip mechanisms are also taken into account. In this investigation simulation performed by mixing the two types of carbon nanotubes, namely single- and multi-walled carbon nanotubes, into water as base fluid. The governing system of partial differential equations is transformed into nonlinear ordinary differential equations which answered by using R–K–Fehlberg-integration scheme. The impact of various pertinent parameters on velocity, temperature and concentration as well as the friction factor coefficient, local Nusselt and local Sherwood number is derived and discussed through graphs and tables for both single- and multi-walled carbon nanotubes cases. It is found that the momentum boundary layer thickness of SWCNTs is thicker than MWCNTs. These results can help us to conclude that SWCNTs are helpful for minimizing the friction between the particles, whereas MWCNTs are helpful for boosting the heat and mass transfer rate.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N33dae84151224c29841da705f23344d2
36 Nd7419e3231c5446fbf31c4d0a05faa58
37 sg:journal.1135936
38 schema:name Magnetohydrodynamic 3D slip flow in a suspension of carbon nanotubes over a slendering sheet with heat source/sink
39 schema:pagination 835-851
40 schema:productId N77ac9f9f4d65497c94b7de7b0d95fd78
41 N80f72942d4984da6a9b666d15799c5e5
42 Naeb2a2fe0eea4f31a525cbbfd354dada
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084019031
44 https://doi.org/10.1007/s00161-017-0563-0
45 schema:sdDatePublished 2019-04-10T21:53
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N21412df7928943128e86a98e5789ce09
48 schema:url http://link.springer.com/10.1007/s00161-017-0563-0
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N21412df7928943128e86a98e5789ce09 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N33dae84151224c29841da705f23344d2 schema:issueNumber 3
55 rdf:type schema:PublicationIssue
56 N55741bc556034ae196454238e374ecd0 rdf:first sg:person.013131232524.34
57 rdf:rest rdf:nil
58 N5d7430afc0cd426dba154d06f51173bb rdf:first sg:person.016422736401.81
59 rdf:rest N8ee52df2b7664210a591085e40ed2ddd
60 N77ac9f9f4d65497c94b7de7b0d95fd78 schema:name readcube_id
61 schema:value a19fed65adc506d4d2e60842860530e3e6158632b442cac252ab252381a6c43a
62 rdf:type schema:PropertyValue
63 N80f72942d4984da6a9b666d15799c5e5 schema:name dimensions_id
64 schema:value pub.1084019031
65 rdf:type schema:PropertyValue
66 N8ee52df2b7664210a591085e40ed2ddd rdf:first sg:person.010416644153.88
67 rdf:rest Ncded4fa415814014b66ea3a2a07d5e0e
68 Naeb2a2fe0eea4f31a525cbbfd354dada schema:name doi
69 schema:value 10.1007/s00161-017-0563-0
70 rdf:type schema:PropertyValue
71 Nbc301e196a9b43b7993b62a2e50286a3 rdf:first sg:person.013714140501.81
72 rdf:rest N55741bc556034ae196454238e374ecd0
73 Ncded4fa415814014b66ea3a2a07d5e0e rdf:first sg:person.012744231012.67
74 rdf:rest Nbc301e196a9b43b7993b62a2e50286a3
75 Nd7419e3231c5446fbf31c4d0a05faa58 schema:volumeNumber 29
76 rdf:type schema:PublicationVolume
77 Nde2bc449fc244d3aa89f45fd78d020e8 rdf:first sg:person.016344526755.75
78 rdf:rest N5d7430afc0cd426dba154d06f51173bb
79 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
80 schema:name Engineering
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
83 schema:name Interdisciplinary Engineering
84 rdf:type schema:DefinedTerm
85 sg:journal.1135936 schema:issn 0935-1175
86 1432-0959
87 schema:name Continuum Mechanics and Thermodynamics
88 rdf:type schema:Periodical
89 sg:person.010416644153.88 schema:affiliation https://www.grid.ac/institutes/grid.412813.d
90 schema:familyName Raju
91 schema:givenName C. S. K.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010416644153.88
93 rdf:type schema:Person
94 sg:person.012744231012.67 schema:affiliation https://www.grid.ac/institutes/grid.411710.2
95 schema:familyName Ibrahim
96 schema:givenName S. M.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012744231012.67
98 rdf:type schema:Person
99 sg:person.013131232524.34 schema:affiliation https://www.grid.ac/institutes/grid.6292.f
100 schema:familyName Lorenzini
101 schema:givenName E.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013131232524.34
103 rdf:type schema:Person
104 sg:person.013714140501.81 schema:affiliation https://www.grid.ac/institutes/grid.10383.39
105 schema:familyName Lorenzini
106 schema:givenName G.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013714140501.81
108 rdf:type schema:Person
109 sg:person.016344526755.75 schema:affiliation https://www.grid.ac/institutes/grid.412313.6
110 schema:familyName Kumar
111 schema:givenName R. V. M. S. S. Kiran
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016344526755.75
113 rdf:type schema:Person
114 sg:person.016422736401.81 schema:affiliation https://www.grid.ac/institutes/grid.412313.6
115 schema:familyName Varma
116 schema:givenName S. Vijaya Kumar
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016422736401.81
118 rdf:type schema:Person
119 sg:pub.10.1007/s13204-013-0242-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024236211
120 https://doi.org/10.1007/s13204-013-0242-9
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s13204-013-0265-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013138206
123 https://doi.org/10.1007/s13204-013-0265-2
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/nmat793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050333257
126 https://doi.org/10.1038/nmat793
127 rdf:type schema:CreativeWork
128 sg:pub.10.1140/epjp/i2013-13100-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033582524
129 https://doi.org/10.1140/epjp/i2013-13100-7
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/htj.20405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012987744
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.aej.2015.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017546013
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.applthermaleng.2008.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006315379
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.compscitech.2009.10.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028223453
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026025479
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.ijthermalsci.2010.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011041761
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.ijthermalsci.2013.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016019936
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.molliq.2016.05.078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011576893
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.molliq.2016.07.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040745270
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.physb.2005.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035691676
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.physe.2014.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043231978
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.rser.2011.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001025540
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.scriptamat.2006.10.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037210267
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.tca.2008.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011460776
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1063/1.1469696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025142067
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1063/1.1613374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057725816
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1063/1.1756680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057815728
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/tnano.2015.2435899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061713341
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1126/science.1060928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013559716
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1155/2015/934367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028036559
170 rdf:type schema:CreativeWork
171 https://doi.org/10.18869/acadpub.jafm.68.225.24064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084375592
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.10383.39 schema:alternateName University of Parma
174 schema:name Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124, Parma, Italy
175 rdf:type schema:Organization
176 https://www.grid.ac/institutes/grid.411710.2 schema:alternateName GITAM University
177 schema:name Department of Mathematics, GITAM University, 530045, Visakhapatnam, India
178 rdf:type schema:Organization
179 https://www.grid.ac/institutes/grid.412313.6 schema:alternateName Sri Venkateswara University
180 schema:name Department of Mathematics, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
181 rdf:type schema:Organization
182 https://www.grid.ac/institutes/grid.412813.d schema:alternateName Vellore Institute of Technology University
183 schema:name Department Of Mathematics, VIT University, Vellore, Tamilnadu, India
184 rdf:type schema:Organization
185 https://www.grid.ac/institutes/grid.6292.f schema:alternateName University of Bologna
186 schema:name Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, Viale Risorgimento 2, 40136, Bologna, Italy
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...