Concurrent shape optimization of a multiscale structure for controlling macrostructural stiffness View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07-14

AUTHORS

Minami Fujioka, Masatoshi Shimoda, Musaddiq Al Ali

ABSTRACT

We propose a novel shape optimization method for designing a multiscale structure with the desired stiffness. The shapes of the macro- and microstructures are concurrently optimized. The squared error norm between actual and target displacements of the macrostructure is minimized as an objective function. The design variables are the shape variation fields of the outer and interface shapes of the macrostructure and the shapes of holes in the microstructures. Subdomains with independent periodic microstructures are arbitrarily defined in the macrostructure in advance. Homogenized elastic tensors are calculated and applied to the correspondent subdomains. The shape gradient functions are theoretically derived with respect to each shape variation of the macro- and microstructures, and applied to the H1 gradient method to determine the optimum shapes. The proposed method is applied to several numerical examples, including Poisson’s ratio design and deformation control designs of an L-shaped bracket and a both ends fixed beam with holes. The results of the design examples confirm that the desired stiff or compliant deformation can be achieved while obtaining clear and smooth boundaries. The influence on the final results of the initial shape of the unit cell, the connectivity of adjacent microstructures, and interface optimization is also discussed. More... »

PAGES

211

References to SciGraph publications

  • 2021-09-14. A unified simultaneous shape and topology optimization method for multi-material laminated shell structures in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2018-11-26. Concurrent topology optimization for cellular structures with nonuniform microstructures based on the kriging metamodel in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2003-02. Shape optimization of periodic structures in COMPUTATIONAL MECHANICS
  • 2008-08-01. Design of graded two-phase microstructures for tailored elasticity gradients in JOURNAL OF MATERIALS SCIENCE
  • 2002-08. Hierarchical optimization of material and structure in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2012-09-26. Topology optimization of functionally graded cellular materials in JOURNAL OF MATERIALS SCIENCE
  • 2018-06-01. Concurrent topology optimization design of structures and non-uniform parameterized lattice microstructures in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2016-07-01. Simultaneous material and structural optimization by multiscale topology optimization in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2020-02-04. Concurrent design of hierarchical structures with three-dimensional parameterized lattice microstructures for additive manufacturing in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2019-08-03. Concurrent topology optimization of multiscale composite structures in Matlab in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2018-07-07. An efficient decoupled sensitivity analysis method for multiscale concurrent topology optimization problems in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2016-03-31. Structure-material integrated design by level sets in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2021-04-24. Simultaneous shape and topology optimization method for frame structures with multi-materials in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2018-11-20. Non-parametric shape optimization method for robust design of solid, shell, and frame structures considering loading uncertainty in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2019-05-18. A level set shape metamorphosis with mechanical constraints for geometrically graded microstructures in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2021-03-08. Topology optimization of multi-scale structures: a review in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2019. Computational Homogenization of Heterogeneous Materials with Finite Elements in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00158-022-03304-y

    DOI

    http://dx.doi.org/10.1007/s00158-022-03304-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149471804


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Graduate School of Advanced Science and Technology, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, 468-8511, Nagoya-shi, Japan", 
              "id": "http://www.grid.ac/institutes/grid.265129.b", 
              "name": [
                "Graduate School of Advanced Science and Technology, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, 468-8511, Nagoya-shi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fujioka", 
            "givenName": "Minami", 
            "id": "sg:person.014153724173.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014153724173.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Advanced Science and Technology, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, 468-8511, Nagoya-shi, Japan", 
              "id": "http://www.grid.ac/institutes/grid.265129.b", 
              "name": [
                "Department of Advanced Science and Technology, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, 468-8511, Nagoya-shi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shimoda", 
            "givenName": "Masatoshi", 
            "id": "sg:person.015553224061.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015553224061.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Advanced Science and Technology, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, 468-8511, Nagoya-shi, Japan", 
              "id": "http://www.grid.ac/institutes/grid.265129.b", 
              "name": [
                "Department of Advanced Science and Technology, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, 468-8511, Nagoya-shi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Al Ali", 
            "givenName": "Musaddiq", 
            "id": "sg:person.012645245062.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012645245062.05"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00158-019-02408-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124595902", 
              "https://doi.org/10.1007/s00158-019-02408-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10853-008-2722-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036821690", 
              "https://doi.org/10.1007/s10853-008-2722-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-002-0209-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003431476", 
              "https://doi.org/10.1007/s00158-002-0209-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-016-1519-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026971858", 
              "https://doi.org/10.1007/s00158-016-1519-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-021-02871-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1137468311", 
              "https://doi.org/10.1007/s00158-021-02871-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-018-2130-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110202929", 
              "https://doi.org/10.1007/s00158-018-2130-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-019-02323-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120110682", 
              "https://doi.org/10.1007/s00158-019-02323-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-018-2144-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110065028", 
              "https://doi.org/10.1007/s00158-018-2144-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00466-002-0382-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020018282", 
              "https://doi.org/10.1007/s00466-002-0382-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-016-1430-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036657850", 
              "https://doi.org/10.1007/s00158-016-1430-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-018-2044-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105333916", 
              "https://doi.org/10.1007/s00158-018-2044-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10853-012-6905-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049387403", 
              "https://doi.org/10.1007/s10853-012-6905-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-018-2009-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104345000", 
              "https://doi.org/10.1007/s00158-018-2009-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-18383-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117043784", 
              "https://doi.org/10.1007/978-3-030-18383-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-019-02293-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1114745413", 
              "https://doi.org/10.1007/s00158-019-02293-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-021-03039-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1141117511", 
              "https://doi.org/10.1007/s00158-021-03039-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-021-02881-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1136233112", 
              "https://doi.org/10.1007/s00158-021-02881-8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-07-14", 
        "datePublishedReg": "2022-07-14", 
        "description": "We propose a novel shape optimization method for designing a multiscale structure with the desired stiffness. The shapes of the macro- and microstructures are concurrently optimized. The squared error norm between actual and target displacements of the macrostructure is minimized as an objective function. The design variables are the shape variation fields of the outer and interface shapes of the macrostructure and the shapes of holes in the microstructures. Subdomains with independent periodic microstructures are arbitrarily defined in the macrostructure in advance. Homogenized elastic tensors are calculated and applied to the correspondent subdomains. The shape gradient functions are theoretically derived with respect to each shape variation of the macro- and microstructures, and applied to the H1 gradient method to determine the optimum shapes. The proposed method is applied to several numerical examples, including Poisson\u2019s ratio design and deformation control designs of an L-shaped bracket and a both ends fixed beam with holes. The results of the design examples confirm that the desired stiff or compliant deformation can be achieved while obtaining clear and smooth boundaries. The influence on the final results of the initial shape of the unit cell, the connectivity of adjacent microstructures, and interface optimization is also discussed.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00158-022-03304-y", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.9678838", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1050630", 
            "issn": [
              "1615-147X", 
              "1615-1488"
            ], 
            "name": "Structural and Multidisciplinary Optimization", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "65"
          }
        ], 
        "keywords": [
          "ratio design", 
          "multiscale structure", 
          "squared error norm", 
          "shape optimization method", 
          "shape gradient function", 
          "H1 gradient method", 
          "adjacent microstructures", 
          "compliant deformation", 
          "shape of holes", 
          "periodic microstructure", 
          "control design", 
          "design variables", 
          "optimum shape", 
          "microstructure", 
          "shape optimization", 
          "design example", 
          "initial shape", 
          "optimization method", 
          "elastic tensor", 
          "macrostructure", 
          "stiffness", 
          "gradient function", 
          "error norm", 
          "numerical examples", 
          "gradient method", 
          "objective function", 
          "unit cell", 
          "optimization", 
          "shape", 
          "design", 
          "deformation", 
          "holes", 
          "beam", 
          "displacement", 
          "method", 
          "structure", 
          "final results", 
          "macro", 
          "boundaries", 
          "results", 
          "field", 
          "smooth boundary", 
          "example", 
          "variation field", 
          "shape variation", 
          "influence", 
          "brackets", 
          "tensor", 
          "outer", 
          "variation", 
          "subdomains", 
          "respect", 
          "function", 
          "advances", 
          "variables", 
          "connectivity", 
          "cells", 
          "norms"
        ], 
        "name": "Concurrent shape optimization of a multiscale structure for controlling macrostructural stiffness", 
        "pagination": "211", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149471804"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00158-022-03304-y"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00158-022-03304-y", 
          "https://app.dimensions.ai/details/publication/pub.1149471804"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_937.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00158-022-03304-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00158-022-03304-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00158-022-03304-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00158-022-03304-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00158-022-03304-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    201 TRIPLES      21 PREDICATES      99 URIs      74 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00158-022-03304-y schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N12998fa6976e4bbea39aaad01d47677f
    4 schema:citation sg:pub.10.1007/978-3-030-18383-7
    5 sg:pub.10.1007/s00158-002-0209-z
    6 sg:pub.10.1007/s00158-016-1430-5
    7 sg:pub.10.1007/s00158-016-1519-x
    8 sg:pub.10.1007/s00158-018-2009-0
    9 sg:pub.10.1007/s00158-018-2044-x
    10 sg:pub.10.1007/s00158-018-2130-0
    11 sg:pub.10.1007/s00158-018-2144-7
    12 sg:pub.10.1007/s00158-019-02293-9
    13 sg:pub.10.1007/s00158-019-02323-6
    14 sg:pub.10.1007/s00158-019-02408-2
    15 sg:pub.10.1007/s00158-021-02871-w
    16 sg:pub.10.1007/s00158-021-02881-8
    17 sg:pub.10.1007/s00158-021-03039-2
    18 sg:pub.10.1007/s00466-002-0382-3
    19 sg:pub.10.1007/s10853-008-2722-y
    20 sg:pub.10.1007/s10853-012-6905-1
    21 schema:datePublished 2022-07-14
    22 schema:datePublishedReg 2022-07-14
    23 schema:description We propose a novel shape optimization method for designing a multiscale structure with the desired stiffness. The shapes of the macro- and microstructures are concurrently optimized. The squared error norm between actual and target displacements of the macrostructure is minimized as an objective function. The design variables are the shape variation fields of the outer and interface shapes of the macrostructure and the shapes of holes in the microstructures. Subdomains with independent periodic microstructures are arbitrarily defined in the macrostructure in advance. Homogenized elastic tensors are calculated and applied to the correspondent subdomains. The shape gradient functions are theoretically derived with respect to each shape variation of the macro- and microstructures, and applied to the H1 gradient method to determine the optimum shapes. The proposed method is applied to several numerical examples, including Poisson’s ratio design and deformation control designs of an L-shaped bracket and a both ends fixed beam with holes. The results of the design examples confirm that the desired stiff or compliant deformation can be achieved while obtaining clear and smooth boundaries. The influence on the final results of the initial shape of the unit cell, the connectivity of adjacent microstructures, and interface optimization is also discussed.
    24 schema:genre article
    25 schema:isAccessibleForFree false
    26 schema:isPartOf N2f055112d94f411392cf1328a3e8eb1a
    27 N68a8fcd33c5c41db8e21751570935f08
    28 sg:journal.1050630
    29 schema:keywords H1 gradient method
    30 adjacent microstructures
    31 advances
    32 beam
    33 boundaries
    34 brackets
    35 cells
    36 compliant deformation
    37 connectivity
    38 control design
    39 deformation
    40 design
    41 design example
    42 design variables
    43 displacement
    44 elastic tensor
    45 error norm
    46 example
    47 field
    48 final results
    49 function
    50 gradient function
    51 gradient method
    52 holes
    53 influence
    54 initial shape
    55 macro
    56 macrostructure
    57 method
    58 microstructure
    59 multiscale structure
    60 norms
    61 numerical examples
    62 objective function
    63 optimization
    64 optimization method
    65 optimum shape
    66 outer
    67 periodic microstructure
    68 ratio design
    69 respect
    70 results
    71 shape
    72 shape gradient function
    73 shape of holes
    74 shape optimization
    75 shape optimization method
    76 shape variation
    77 smooth boundary
    78 squared error norm
    79 stiffness
    80 structure
    81 subdomains
    82 tensor
    83 unit cell
    84 variables
    85 variation
    86 variation field
    87 schema:name Concurrent shape optimization of a multiscale structure for controlling macrostructural stiffness
    88 schema:pagination 211
    89 schema:productId N93e6e13f9cad48508f1839ded6f8696b
    90 Nf39ab04b1136430e84d5818cc38e24ba
    91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149471804
    92 https://doi.org/10.1007/s00158-022-03304-y
    93 schema:sdDatePublished 2022-12-01T06:43
    94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    95 schema:sdPublisher N6284a091c62a4668b0a683bbc3e08822
    96 schema:url https://doi.org/10.1007/s00158-022-03304-y
    97 sgo:license sg:explorer/license/
    98 sgo:sdDataset articles
    99 rdf:type schema:ScholarlyArticle
    100 N12998fa6976e4bbea39aaad01d47677f rdf:first sg:person.014153724173.07
    101 rdf:rest Ne38b0b409f4845ad872e78e7c2211d42
    102 N2f055112d94f411392cf1328a3e8eb1a schema:issueNumber 7
    103 rdf:type schema:PublicationIssue
    104 N4a35d2c1889b49df94aae48d1a211d64 rdf:first sg:person.012645245062.05
    105 rdf:rest rdf:nil
    106 N6284a091c62a4668b0a683bbc3e08822 schema:name Springer Nature - SN SciGraph project
    107 rdf:type schema:Organization
    108 N68a8fcd33c5c41db8e21751570935f08 schema:volumeNumber 65
    109 rdf:type schema:PublicationVolume
    110 N93e6e13f9cad48508f1839ded6f8696b schema:name dimensions_id
    111 schema:value pub.1149471804
    112 rdf:type schema:PropertyValue
    113 Ne38b0b409f4845ad872e78e7c2211d42 rdf:first sg:person.015553224061.61
    114 rdf:rest N4a35d2c1889b49df94aae48d1a211d64
    115 Nf39ab04b1136430e84d5818cc38e24ba schema:name doi
    116 schema:value 10.1007/s00158-022-03304-y
    117 rdf:type schema:PropertyValue
    118 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Mathematical Sciences
    120 rdf:type schema:DefinedTerm
    121 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Numerical and Computational Mathematics
    123 rdf:type schema:DefinedTerm
    124 sg:grant.9678838 http://pending.schema.org/fundedItem sg:pub.10.1007/s00158-022-03304-y
    125 rdf:type schema:MonetaryGrant
    126 sg:journal.1050630 schema:issn 1615-147X
    127 1615-1488
    128 schema:name Structural and Multidisciplinary Optimization
    129 schema:publisher Springer Nature
    130 rdf:type schema:Periodical
    131 sg:person.012645245062.05 schema:affiliation grid-institutes:grid.265129.b
    132 schema:familyName Al Ali
    133 schema:givenName Musaddiq
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012645245062.05
    135 rdf:type schema:Person
    136 sg:person.014153724173.07 schema:affiliation grid-institutes:grid.265129.b
    137 schema:familyName Fujioka
    138 schema:givenName Minami
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014153724173.07
    140 rdf:type schema:Person
    141 sg:person.015553224061.61 schema:affiliation grid-institutes:grid.265129.b
    142 schema:familyName Shimoda
    143 schema:givenName Masatoshi
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015553224061.61
    145 rdf:type schema:Person
    146 sg:pub.10.1007/978-3-030-18383-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117043784
    147 https://doi.org/10.1007/978-3-030-18383-7
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s00158-002-0209-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1003431476
    150 https://doi.org/10.1007/s00158-002-0209-z
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s00158-016-1430-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036657850
    153 https://doi.org/10.1007/s00158-016-1430-5
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/s00158-016-1519-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026971858
    156 https://doi.org/10.1007/s00158-016-1519-x
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s00158-018-2009-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104345000
    159 https://doi.org/10.1007/s00158-018-2009-0
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s00158-018-2044-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1105333916
    162 https://doi.org/10.1007/s00158-018-2044-x
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s00158-018-2130-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110202929
    165 https://doi.org/10.1007/s00158-018-2130-0
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s00158-018-2144-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110065028
    168 https://doi.org/10.1007/s00158-018-2144-7
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s00158-019-02293-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114745413
    171 https://doi.org/10.1007/s00158-019-02293-9
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s00158-019-02323-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120110682
    174 https://doi.org/10.1007/s00158-019-02323-6
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s00158-019-02408-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124595902
    177 https://doi.org/10.1007/s00158-019-02408-2
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/s00158-021-02871-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1137468311
    180 https://doi.org/10.1007/s00158-021-02871-w
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/s00158-021-02881-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136233112
    183 https://doi.org/10.1007/s00158-021-02881-8
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/s00158-021-03039-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141117511
    186 https://doi.org/10.1007/s00158-021-03039-2
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/s00466-002-0382-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020018282
    189 https://doi.org/10.1007/s00466-002-0382-3
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s10853-008-2722-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1036821690
    192 https://doi.org/10.1007/s10853-008-2722-y
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s10853-012-6905-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049387403
    195 https://doi.org/10.1007/s10853-012-6905-1
    196 rdf:type schema:CreativeWork
    197 grid-institutes:grid.265129.b schema:alternateName Department of Advanced Science and Technology, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, 468-8511, Nagoya-shi, Japan
    198 Graduate School of Advanced Science and Technology, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, 468-8511, Nagoya-shi, Japan
    199 schema:name Department of Advanced Science and Technology, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, 468-8511, Nagoya-shi, Japan
    200 Graduate School of Advanced Science and Technology, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, 468-8511, Nagoya-shi, Japan
    201 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...