Proximal-exploration multi-objective Bayesian optimization for inverse identification of cyclic constitutive law of structural steels View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07-06

AUTHORS

Bach Do, Makoto Ohsaki

ABSTRACT

Despite its importance in seismic response analysis, solving an inverse problem to identify the cyclic elastoplastic parameters for structural steels using conventional optimization algorithms still demands a substantial computational cost of repeatedly carrying out many nonlinear analyses. The parameters are commonly identified based on experimental measures from a single loading history, leading them to be biased and giving inaccurate predictions of structural behavior under other loading histories. To address these issues, we formulate a multi-objective inverse problem that simultaneously minimizes the error functions representing the differences between simulated responses and those measured experimentally from various cyclic tests of a steel specimen or a structural component. We then propose proximal-exploration multi-objective Bayesian optimization (MOBO) for solving the formulated inverse problem, resulting in an approximate Pareto front of parameters while limiting the number of costly simulations. MOBO sorts an initial Pareto front and constructs Gaussian process (GP) models for the error functions from a training dataset. It then relies on the hypervolume of the current solutions, the GP models, and a proximal exploration surrounding the current best compromise parameters to formulate an acquisition function that guides the improvement of the current solutions intelligently. Two identification examples show that the parameters obtained from the multi-objective inverse problem can reduce the bias induced using a single loading history for identification. The robustness of MOBO as well as a good prediction performance of the best compromise solution of identified parameters are demonstrated. More... »

PAGES

199

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00158-022-03297-8

DOI

http://dx.doi.org/10.1007/s00158-022-03297-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1149271454


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo, 615-8540, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo, 615-8540, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Do", 
        "givenName": "Bach", 
        "id": "sg:person.010670333227.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010670333227.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo, 615-8540, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo, 615-8540, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohsaki", 
        "givenName": "Makoto", 
        "id": "sg:person.015212763735.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015212763735.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10898-013-0118-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042788176", 
          "https://doi.org/10.1007/s10898-013-0118-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10898-016-0427-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012315836", 
          "https://doi.org/10.1007/s10898-016-0427-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-020-60652-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125717950", 
          "https://doi.org/10.1038/s41598-020-60652-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13296-015-0134-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029691627", 
          "https://doi.org/10.1007/s13296-015-0134-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11081-021-09663-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1140575275", 
          "https://doi.org/10.1007/s11081-021-09663-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12289-018-1421-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105597203", 
          "https://doi.org/10.1007/s12289-018-1421-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-018-2182-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111100393", 
          "https://doi.org/10.1007/s00158-018-2182-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008306431147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009040383", 
          "https://doi.org/10.1023/a:1008306431147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-020-02720-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1131157545", 
          "https://doi.org/10.1007/s00158-020-02720-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4939-8847-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111272209", 
          "https://doi.org/10.1007/978-1-4939-8847-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-07-06", 
    "datePublishedReg": "2022-07-06", 
    "description": "Despite its importance in seismic response analysis, solving an inverse problem to identify the cyclic elastoplastic parameters for structural steels using conventional optimization algorithms still demands a substantial computational cost of repeatedly carrying out many nonlinear analyses. The parameters are commonly identified based on experimental measures from a single loading history, leading them to be biased and giving inaccurate predictions of structural behavior under other loading histories. To address these issues, we formulate a multi-objective inverse problem that simultaneously minimizes the error functions representing the differences between simulated responses and those measured experimentally from various cyclic tests of a steel specimen or a structural component. We then propose proximal-exploration multi-objective Bayesian optimization (MOBO) for solving the formulated inverse problem, resulting in an approximate Pareto front of parameters while limiting the number of costly simulations. MOBO sorts an initial Pareto front and constructs Gaussian process (GP) models for the error functions from a training dataset. It then relies on the hypervolume of the current solutions, the GP models, and a proximal exploration surrounding the current best compromise parameters to formulate an acquisition function that guides the improvement of the current solutions intelligently. Two identification examples show that the parameters obtained from the multi-objective inverse problem can reduce the bias induced using a single loading history for identification. The robustness of MOBO as well as a good prediction performance of the best compromise solution of identified parameters are demonstrated.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00158-022-03297-8", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8427346", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1050630", 
        "issn": [
          "1615-147X", 
          "1615-1488"
        ], 
        "name": "Structural and Multidisciplinary Optimization", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "65"
      }
    ], 
    "keywords": [
      "multi-objective Bayesian optimization", 
      "multi-objective inverse problems", 
      "inverse problem", 
      "Bayesian optimization", 
      "Pareto front", 
      "initial Pareto front", 
      "conventional optimization algorithms", 
      "formulated inverse problem", 
      "approximate Pareto front", 
      "best compromise solution", 
      "error function", 
      "Gaussian process model", 
      "loading history", 
      "structural steel", 
      "costly simulations", 
      "substantial computational cost", 
      "identification example", 
      "optimization algorithm", 
      "acquisition function", 
      "computational cost", 
      "compromise solution", 
      "inverse identification", 
      "cyclic constitutive laws", 
      "GP model", 
      "nonlinear analysis", 
      "seismic response analysis", 
      "better prediction performance", 
      "current solutions", 
      "steel specimen", 
      "elastoplastic parameters", 
      "cyclic tests", 
      "inaccurate predictions", 
      "structural behavior", 
      "constitutive law", 
      "optimization", 
      "problem", 
      "response analysis", 
      "solution", 
      "parameters", 
      "steel", 
      "prediction performance", 
      "process model", 
      "hypervolume", 
      "structural components", 
      "experimental measures", 
      "model", 
      "function", 
      "algorithm", 
      "robustness", 
      "simulations", 
      "front", 
      "training dataset", 
      "law", 
      "prediction", 
      "specimen", 
      "performance", 
      "number", 
      "analysis", 
      "cost", 
      "behavior", 
      "dataset", 
      "test", 
      "bias", 
      "components", 
      "identification", 
      "improvement", 
      "example", 
      "measures", 
      "exploration", 
      "issues", 
      "importance", 
      "response", 
      "differences", 
      "history"
    ], 
    "name": "Proximal-exploration multi-objective Bayesian optimization for inverse identification of cyclic constitutive law of structural steels", 
    "pagination": "199", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1149271454"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00158-022-03297-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00158-022-03297-8", 
      "https://app.dimensions.ai/details/publication/pub.1149271454"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_938.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00158-022-03297-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00158-022-03297-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00158-022-03297-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00158-022-03297-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00158-022-03297-8'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      21 PREDICATES      108 URIs      90 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00158-022-03297-8 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nff347215819040018db9277b49d9cdb9
4 schema:citation sg:pub.10.1007/978-1-4939-8847-1
5 sg:pub.10.1007/s00158-018-2182-1
6 sg:pub.10.1007/s00158-020-02720-2
7 sg:pub.10.1007/s10898-013-0118-2
8 sg:pub.10.1007/s10898-016-0427-3
9 sg:pub.10.1007/s11081-021-09663-7
10 sg:pub.10.1007/s12289-018-1421-8
11 sg:pub.10.1007/s13296-015-0134-9
12 sg:pub.10.1023/a:1008306431147
13 sg:pub.10.1038/s41598-020-60652-9
14 schema:datePublished 2022-07-06
15 schema:datePublishedReg 2022-07-06
16 schema:description Despite its importance in seismic response analysis, solving an inverse problem to identify the cyclic elastoplastic parameters for structural steels using conventional optimization algorithms still demands a substantial computational cost of repeatedly carrying out many nonlinear analyses. The parameters are commonly identified based on experimental measures from a single loading history, leading them to be biased and giving inaccurate predictions of structural behavior under other loading histories. To address these issues, we formulate a multi-objective inverse problem that simultaneously minimizes the error functions representing the differences between simulated responses and those measured experimentally from various cyclic tests of a steel specimen or a structural component. We then propose proximal-exploration multi-objective Bayesian optimization (MOBO) for solving the formulated inverse problem, resulting in an approximate Pareto front of parameters while limiting the number of costly simulations. MOBO sorts an initial Pareto front and constructs Gaussian process (GP) models for the error functions from a training dataset. It then relies on the hypervolume of the current solutions, the GP models, and a proximal exploration surrounding the current best compromise parameters to formulate an acquisition function that guides the improvement of the current solutions intelligently. Two identification examples show that the parameters obtained from the multi-objective inverse problem can reduce the bias induced using a single loading history for identification. The robustness of MOBO as well as a good prediction performance of the best compromise solution of identified parameters are demonstrated.
17 schema:genre article
18 schema:isAccessibleForFree false
19 schema:isPartOf N64f58dfb08534136a7392985eb76c580
20 Nf7eb9f84c1b24250ae267ae5d9f4689b
21 sg:journal.1050630
22 schema:keywords Bayesian optimization
23 GP model
24 Gaussian process model
25 Pareto front
26 acquisition function
27 algorithm
28 analysis
29 approximate Pareto front
30 behavior
31 best compromise solution
32 better prediction performance
33 bias
34 components
35 compromise solution
36 computational cost
37 constitutive law
38 conventional optimization algorithms
39 cost
40 costly simulations
41 current solutions
42 cyclic constitutive laws
43 cyclic tests
44 dataset
45 differences
46 elastoplastic parameters
47 error function
48 example
49 experimental measures
50 exploration
51 formulated inverse problem
52 front
53 function
54 history
55 hypervolume
56 identification
57 identification example
58 importance
59 improvement
60 inaccurate predictions
61 initial Pareto front
62 inverse identification
63 inverse problem
64 issues
65 law
66 loading history
67 measures
68 model
69 multi-objective Bayesian optimization
70 multi-objective inverse problems
71 nonlinear analysis
72 number
73 optimization
74 optimization algorithm
75 parameters
76 performance
77 prediction
78 prediction performance
79 problem
80 process model
81 response
82 response analysis
83 robustness
84 seismic response analysis
85 simulations
86 solution
87 specimen
88 steel
89 steel specimen
90 structural behavior
91 structural components
92 structural steel
93 substantial computational cost
94 test
95 training dataset
96 schema:name Proximal-exploration multi-objective Bayesian optimization for inverse identification of cyclic constitutive law of structural steels
97 schema:pagination 199
98 schema:productId N02bf745015b444d4aa743ff20d40c041
99 N30c21e38b3844f0e9d92b0f9fd20200c
100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149271454
101 https://doi.org/10.1007/s00158-022-03297-8
102 schema:sdDatePublished 2022-10-01T06:50
103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
104 schema:sdPublisher Ne7cb48f076ff423e9d57e656e57d45a2
105 schema:url https://doi.org/10.1007/s00158-022-03297-8
106 sgo:license sg:explorer/license/
107 sgo:sdDataset articles
108 rdf:type schema:ScholarlyArticle
109 N02bf745015b444d4aa743ff20d40c041 schema:name doi
110 schema:value 10.1007/s00158-022-03297-8
111 rdf:type schema:PropertyValue
112 N30c21e38b3844f0e9d92b0f9fd20200c schema:name dimensions_id
113 schema:value pub.1149271454
114 rdf:type schema:PropertyValue
115 N55ef4038bb544a7db4dcda362064e2e9 rdf:first sg:person.015212763735.16
116 rdf:rest rdf:nil
117 N64f58dfb08534136a7392985eb76c580 schema:volumeNumber 65
118 rdf:type schema:PublicationVolume
119 Ne7cb48f076ff423e9d57e656e57d45a2 schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 Nf7eb9f84c1b24250ae267ae5d9f4689b schema:issueNumber 7
122 rdf:type schema:PublicationIssue
123 Nff347215819040018db9277b49d9cdb9 rdf:first sg:person.010670333227.08
124 rdf:rest N55ef4038bb544a7db4dcda362064e2e9
125 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
126 schema:name Mathematical Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
129 schema:name Numerical and Computational Mathematics
130 rdf:type schema:DefinedTerm
131 sg:grant.8427346 http://pending.schema.org/fundedItem sg:pub.10.1007/s00158-022-03297-8
132 rdf:type schema:MonetaryGrant
133 sg:journal.1050630 schema:issn 1615-147X
134 1615-1488
135 schema:name Structural and Multidisciplinary Optimization
136 schema:publisher Springer Nature
137 rdf:type schema:Periodical
138 sg:person.010670333227.08 schema:affiliation grid-institutes:grid.258799.8
139 schema:familyName Do
140 schema:givenName Bach
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010670333227.08
142 rdf:type schema:Person
143 sg:person.015212763735.16 schema:affiliation grid-institutes:grid.258799.8
144 schema:familyName Ohsaki
145 schema:givenName Makoto
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015212763735.16
147 rdf:type schema:Person
148 sg:pub.10.1007/978-1-4939-8847-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111272209
149 https://doi.org/10.1007/978-1-4939-8847-1
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s00158-018-2182-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111100393
152 https://doi.org/10.1007/s00158-018-2182-1
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s00158-020-02720-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131157545
155 https://doi.org/10.1007/s00158-020-02720-2
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s10898-013-0118-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042788176
158 https://doi.org/10.1007/s10898-013-0118-2
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s10898-016-0427-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012315836
161 https://doi.org/10.1007/s10898-016-0427-3
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s11081-021-09663-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140575275
164 https://doi.org/10.1007/s11081-021-09663-7
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s12289-018-1421-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105597203
167 https://doi.org/10.1007/s12289-018-1421-8
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s13296-015-0134-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029691627
170 https://doi.org/10.1007/s13296-015-0134-9
171 rdf:type schema:CreativeWork
172 sg:pub.10.1023/a:1008306431147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009040383
173 https://doi.org/10.1023/a:1008306431147
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/s41598-020-60652-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125717950
176 https://doi.org/10.1038/s41598-020-60652-9
177 rdf:type schema:CreativeWork
178 grid-institutes:grid.258799.8 schema:alternateName Department of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo, 615-8540, Kyoto, Japan
179 schema:name Department of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo, 615-8540, Kyoto, Japan
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...