Topology optimization for polymeric stent View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-06-30

AUTHORS

H. X. Li, W. L. Shi, Z. Tan, M. J. Wang, D. Y. Zhao, J. Yan

ABSTRACT

The topological optimization technique is an effective way to provide the optimal design for the polymeric stents. Conventional topology optimization procedure for polymeric stent was all based on classical theory of elasticity and usually only used one layer of shell element in structural analysis. It will lead to that the simulated stent structural stiffness deviates from the real case. Thus, a novel 3D topology optimization procedure based on Cosserat theory is proposed to maximize the radial stiffness of polymeric stent by taking advantage of the size effect of polymer materials. The stent structural analysis is implemented by a proposed high-order Cosserat spectral element method, ensuring that the analysis and optimization results can achieve high accuracy with only one layer of element for the polymeric stent. Cosserat characteristic length of polymeric material is obtained by the three-point bending test, and a parametric analysis is conducted to identify the effect of Cosserat characteristic length, volume fraction, and unit cell size on the optimized stent structure, and the optimal results based on the Cosserat theory are compared with the conventional ones. It is found that the size effect has a significant impact on the topology optimization results of polymeric stent. Compared with conventional commercial stent, the optimal polymeric stent obtained by the Cosserat theory has lower volume fraction and higher radial stiffness. Our results provide an effective way to further improve the mechanical performance of the polymeric stent. More... »

PAGES

194

References to SciGraph publications

  • 2010-11-20. Efficient topology optimization in MATLAB using 88 lines of code in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2001-04. Checkerboard and minimum member size control in topology optimization in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2013-11-26. Biodegradable-polymer DES versus second-generation durable-polymer DES in NATURE REVIEWS CARDIOLOGY
  • 2016-11-17. Absorbing results with degradable stents in NATURE REVIEWS CARDIOLOGY
  • 2019-01-23. Multi-Objective Optimization Design of Balloon-Expandable Coronary Stent in CARDIOVASCULAR ENGINEERING AND TECHNOLOGY
  • 2015-07-17. Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent in CARDIOVASCULAR ENGINEERING AND TECHNOLOGY
  • 2005-12-13. A review of optimization of cast parts using topology optimization in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2015-09-25. A new micromechanical approach of micropolar continuum modeling for 2-D periodic cellular material in ACTA MECHANICA SINICA
  • 1999-02. Free energy of semiflexible polymers and structure of interfaces in THE EUROPEAN PHYSICAL JOURNAL B
  • 2012-09-06. Finite element analysis of 3D elastic–plastic frictional contact problem for Cosserat materials in COMPUTATIONAL MECHANICS
  • 2018-12-10. A Computational Study of Mechanical Performance of Bioresorbable Polymeric Stents with Design Variations in CARDIOVASCULAR ENGINEERING AND TECHNOLOGY
  • 2005-12. The Frictional Properties of Newtonian Fluids in Rolling–Sliding soft-EHL Contact in TRIBOLOGY LETTERS
  • 2016-12-28. Multi-objective optimization of coronary stent using Kriging surrogate model in BIOMEDICAL ENGINEERING ONLINE
  • 2015-09-04. On thresholds in the indentation size effect of polymers in POLYMER BULLETIN
  • 1999-10. Strain gradient plasticity effect in indentation hardness of polymers in JOURNAL OF MATERIALS RESEARCH
  • 2017-04-10. Strong Cosserat elastic effects in a unidirectional composite in ZEITSCHRIFT FÜR ANGEWANDTE MATHEMATIK UND PHYSIK
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00158-022-03292-z

    DOI

    http://dx.doi.org/10.1007/s00158-022-03292-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149109950


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Mechanical Engineering, Dalian University of Technology, 116024, Dalian, China", 
              "id": "http://www.grid.ac/institutes/grid.30055.33", 
              "name": [
                "School of Mechanical Engineering, Dalian University of Technology, 116024, Dalian, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "H. X.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mechanical Engineering, Dalian University of Technology, 116024, Dalian, China", 
              "id": "http://www.grid.ac/institutes/grid.30055.33", 
              "name": [
                "School of Mechanical Engineering, Dalian University of Technology, 116024, Dalian, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "W. L.", 
            "id": "sg:person.015435755041.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015435755041.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mechanical Engineering, Dalian University of Technology, 116024, Dalian, China", 
              "id": "http://www.grid.ac/institutes/grid.30055.33", 
              "name": [
                "School of Mechanical Engineering, Dalian University of Technology, 116024, Dalian, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tan", 
            "givenName": "Z.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mechanical Engineering, Dalian University of Technology, 116024, Dalian, China", 
              "id": "http://www.grid.ac/institutes/grid.30055.33", 
              "name": [
                "School of Mechanical Engineering, Dalian University of Technology, 116024, Dalian, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "M. J.", 
            "id": "sg:person.013737134527.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013737134527.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mechanical Engineering, Dalian University of Technology, 116024, Dalian, China", 
              "id": "http://www.grid.ac/institutes/grid.30055.33", 
              "name": [
                "School of Mechanical Engineering, Dalian University of Technology, 116024, Dalian, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "D. Y.", 
            "id": "sg:person.013416013753.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013416013753.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, 116024, Dalian, China", 
              "id": "http://www.grid.ac/institutes/grid.30055.33", 
              "name": [
                "State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, 116024, Dalian, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yan", 
            "givenName": "J.", 
            "id": "sg:person.014337701640.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014337701640.07"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00158-010-0594-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039475508", 
              "https://doi.org/10.1007/s00158-010-0594-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10409-015-0492-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053538457", 
              "https://doi.org/10.1007/s10409-015-0492-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00466-012-0773-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010711860", 
              "https://doi.org/10.1007/s00466-012-0773-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrcardio.2013.184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029824929", 
              "https://doi.org/10.1038/nrcardio.2013.184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001580050179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033115735", 
              "https://doi.org/10.1007/s001580050179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s100510050650", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016318892", 
              "https://doi.org/10.1007/s100510050650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13239-015-0235-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000794007", 
              "https://doi.org/10.1007/s13239-015-0235-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/jmr.1999.0554", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015307307", 
              "https://doi.org/10.1557/jmr.1999.0554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12938-016-0268-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018155020", 
              "https://doi.org/10.1186/s12938-016-0268-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00033-017-0796-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084764657", 
              "https://doi.org/10.1007/s00033-017-0796-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrcardio.2016.184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046919816", 
              "https://doi.org/10.1038/nrcardio.2016.184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-005-0554-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041855569", 
              "https://doi.org/10.1007/s00158-005-0554-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13239-019-00401-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111618757", 
              "https://doi.org/10.1007/s13239-019-00401-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00289-015-1517-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046932114", 
              "https://doi.org/10.1007/s00289-015-1517-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13239-018-00397-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110507246", 
              "https://doi.org/10.1007/s13239-018-00397-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11249-005-9067-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024550893", 
              "https://doi.org/10.1007/s11249-005-9067-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-06-30", 
        "datePublishedReg": "2022-06-30", 
        "description": "The topological optimization technique is an effective way to provide the optimal design for the polymeric stents. Conventional topology optimization procedure for polymeric stent was all based on classical theory of elasticity and usually only used one layer of shell element in structural analysis. It will lead to that the simulated stent structural stiffness deviates from the real case. Thus, a novel 3D topology optimization procedure based on Cosserat theory is proposed to maximize the radial stiffness of polymeric stent by taking advantage of the size effect of polymer materials. The stent structural analysis is implemented by a proposed high-order Cosserat spectral element method, ensuring that the analysis and optimization results can achieve high accuracy with only one layer of element for the polymeric stent. Cosserat characteristic length of polymeric material is obtained by the three-point bending test, and a parametric analysis is conducted to identify the effect of Cosserat characteristic length, volume fraction, and unit cell size on the optimized stent structure, and the optimal results based on the Cosserat theory are compared with the conventional ones. It is found that the size effect has a significant impact on the topology optimization results of polymeric stent. Compared with conventional commercial stent, the optimal polymeric stent obtained by the Cosserat theory has lower volume fraction and higher radial stiffness. Our results provide an effective way to further improve the mechanical performance of the polymeric stent.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00158-022-03292-z", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8122038", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1050630", 
            "issn": [
              "1615-147X", 
              "1615-1488"
            ], 
            "name": "Structural and Multidisciplinary Optimization", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "65"
          }
        ], 
        "keywords": [
          "topology optimization procedure", 
          "polymeric stents", 
          "Cosserat theory", 
          "radial stiffness", 
          "volume fraction", 
          "Cosserat characteristic lengths", 
          "optimization results", 
          "topology optimization results", 
          "high radial stiffness", 
          "topological optimization technique", 
          "characteristic length", 
          "optimization procedure", 
          "low volume fraction", 
          "size effect", 
          "spectral element method", 
          "layer of elements", 
          "mechanical performance", 
          "shell elements", 
          "stent structure", 
          "commercial stents", 
          "three-point", 
          "element method", 
          "polymer materials", 
          "topology optimization", 
          "parametric analysis", 
          "optimal design", 
          "unit cell size", 
          "polymeric materials", 
          "conventional one", 
          "effective way", 
          "optimization techniques", 
          "stiffness", 
          "structural analysis", 
          "layer", 
          "high accuracy", 
          "materials", 
          "real case", 
          "optimal results", 
          "classical theory", 
          "cell size", 
          "elasticity", 
          "optimization", 
          "design", 
          "results", 
          "performance", 
          "significant impact", 
          "elements", 
          "fraction", 
          "accuracy", 
          "effect", 
          "length", 
          "advantages", 
          "analysis", 
          "structure", 
          "technique", 
          "stents", 
          "theory", 
          "method", 
          "size", 
          "test", 
          "deviates", 
          "procedure", 
          "way", 
          "one", 
          "impact", 
          "cases"
        ], 
        "name": "Topology optimization for polymeric stent", 
        "pagination": "194", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149109950"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00158-022-03292-z"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00158-022-03292-z", 
          "https://app.dimensions.ai/details/publication/pub.1149109950"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_934.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00158-022-03292-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00158-022-03292-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00158-022-03292-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00158-022-03292-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00158-022-03292-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    224 TRIPLES      21 PREDICATES      106 URIs      82 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00158-022-03292-z schema:about anzsrc-for:01
    2 anzsrc-for:09
    3 schema:author Na6d5e8b7e6f1457e9ba6dcde064d53f6
    4 schema:citation sg:pub.10.1007/s00033-017-0796-6
    5 sg:pub.10.1007/s00158-005-0554-9
    6 sg:pub.10.1007/s00158-010-0594-7
    7 sg:pub.10.1007/s001580050179
    8 sg:pub.10.1007/s00289-015-1517-y
    9 sg:pub.10.1007/s00466-012-0773-z
    10 sg:pub.10.1007/s100510050650
    11 sg:pub.10.1007/s10409-015-0492-8
    12 sg:pub.10.1007/s11249-005-9067-3
    13 sg:pub.10.1007/s13239-015-0235-9
    14 sg:pub.10.1007/s13239-018-00397-9
    15 sg:pub.10.1007/s13239-019-00401-w
    16 sg:pub.10.1038/nrcardio.2013.184
    17 sg:pub.10.1038/nrcardio.2016.184
    18 sg:pub.10.1186/s12938-016-0268-9
    19 sg:pub.10.1557/jmr.1999.0554
    20 schema:datePublished 2022-06-30
    21 schema:datePublishedReg 2022-06-30
    22 schema:description The topological optimization technique is an effective way to provide the optimal design for the polymeric stents. Conventional topology optimization procedure for polymeric stent was all based on classical theory of elasticity and usually only used one layer of shell element in structural analysis. It will lead to that the simulated stent structural stiffness deviates from the real case. Thus, a novel 3D topology optimization procedure based on Cosserat theory is proposed to maximize the radial stiffness of polymeric stent by taking advantage of the size effect of polymer materials. The stent structural analysis is implemented by a proposed high-order Cosserat spectral element method, ensuring that the analysis and optimization results can achieve high accuracy with only one layer of element for the polymeric stent. Cosserat characteristic length of polymeric material is obtained by the three-point bending test, and a parametric analysis is conducted to identify the effect of Cosserat characteristic length, volume fraction, and unit cell size on the optimized stent structure, and the optimal results based on the Cosserat theory are compared with the conventional ones. It is found that the size effect has a significant impact on the topology optimization results of polymeric stent. Compared with conventional commercial stent, the optimal polymeric stent obtained by the Cosserat theory has lower volume fraction and higher radial stiffness. Our results provide an effective way to further improve the mechanical performance of the polymeric stent.
    23 schema:genre article
    24 schema:isAccessibleForFree false
    25 schema:isPartOf N6881dcb4e1b54bddb8673ddc6de43ba7
    26 Ne18861c0a90f441fb62379ce06625212
    27 sg:journal.1050630
    28 schema:keywords Cosserat characteristic lengths
    29 Cosserat theory
    30 accuracy
    31 advantages
    32 analysis
    33 cases
    34 cell size
    35 characteristic length
    36 classical theory
    37 commercial stents
    38 conventional one
    39 design
    40 deviates
    41 effect
    42 effective way
    43 elasticity
    44 element method
    45 elements
    46 fraction
    47 high accuracy
    48 high radial stiffness
    49 impact
    50 layer
    51 layer of elements
    52 length
    53 low volume fraction
    54 materials
    55 mechanical performance
    56 method
    57 one
    58 optimal design
    59 optimal results
    60 optimization
    61 optimization procedure
    62 optimization results
    63 optimization techniques
    64 parametric analysis
    65 performance
    66 polymer materials
    67 polymeric materials
    68 polymeric stents
    69 procedure
    70 radial stiffness
    71 real case
    72 results
    73 shell elements
    74 significant impact
    75 size
    76 size effect
    77 spectral element method
    78 stent structure
    79 stents
    80 stiffness
    81 structural analysis
    82 structure
    83 technique
    84 test
    85 theory
    86 three-point
    87 topological optimization technique
    88 topology optimization
    89 topology optimization procedure
    90 topology optimization results
    91 unit cell size
    92 volume fraction
    93 way
    94 schema:name Topology optimization for polymeric stent
    95 schema:pagination 194
    96 schema:productId N795fb51937a94155a2a3e41a1422e825
    97 Nc60e6516bad34d1b86d1dea054c2a73b
    98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149109950
    99 https://doi.org/10.1007/s00158-022-03292-z
    100 schema:sdDatePublished 2022-09-02T16:07
    101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    102 schema:sdPublisher N514ff9048f3e4e36962d9733c07ce03f
    103 schema:url https://doi.org/10.1007/s00158-022-03292-z
    104 sgo:license sg:explorer/license/
    105 sgo:sdDataset articles
    106 rdf:type schema:ScholarlyArticle
    107 N152532c975cf498cba130602994d4551 rdf:first sg:person.013416013753.61
    108 rdf:rest Na0fc355b0f6f49df9911a3b89e80a305
    109 N503d20125d614674b7c941bf347523dd rdf:first sg:person.015435755041.18
    110 rdf:rest Naaa317a5464144e7b8be058c8415267b
    111 N514ff9048f3e4e36962d9733c07ce03f schema:name Springer Nature - SN SciGraph project
    112 rdf:type schema:Organization
    113 N6881dcb4e1b54bddb8673ddc6de43ba7 schema:issueNumber 7
    114 rdf:type schema:PublicationIssue
    115 N795fb51937a94155a2a3e41a1422e825 schema:name doi
    116 schema:value 10.1007/s00158-022-03292-z
    117 rdf:type schema:PropertyValue
    118 Na0fc355b0f6f49df9911a3b89e80a305 rdf:first sg:person.014337701640.07
    119 rdf:rest rdf:nil
    120 Na6d5e8b7e6f1457e9ba6dcde064d53f6 rdf:first Nbc503ea3e0c0487d88e3fd32682b23e7
    121 rdf:rest N503d20125d614674b7c941bf347523dd
    122 Naaa317a5464144e7b8be058c8415267b rdf:first Nf3b7b2fb4b5549e7819d8050f3f5778f
    123 rdf:rest Nb737b115693d49c49af9731fe1c30448
    124 Nb737b115693d49c49af9731fe1c30448 rdf:first sg:person.013737134527.73
    125 rdf:rest N152532c975cf498cba130602994d4551
    126 Nbc503ea3e0c0487d88e3fd32682b23e7 schema:affiliation grid-institutes:grid.30055.33
    127 schema:familyName Li
    128 schema:givenName H. X.
    129 rdf:type schema:Person
    130 Nc60e6516bad34d1b86d1dea054c2a73b schema:name dimensions_id
    131 schema:value pub.1149109950
    132 rdf:type schema:PropertyValue
    133 Ne18861c0a90f441fb62379ce06625212 schema:volumeNumber 65
    134 rdf:type schema:PublicationVolume
    135 Nf3b7b2fb4b5549e7819d8050f3f5778f schema:affiliation grid-institutes:grid.30055.33
    136 schema:familyName Tan
    137 schema:givenName Z.
    138 rdf:type schema:Person
    139 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Mathematical Sciences
    141 rdf:type schema:DefinedTerm
    142 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Engineering
    144 rdf:type schema:DefinedTerm
    145 sg:grant.8122038 http://pending.schema.org/fundedItem sg:pub.10.1007/s00158-022-03292-z
    146 rdf:type schema:MonetaryGrant
    147 sg:journal.1050630 schema:issn 1615-147X
    148 1615-1488
    149 schema:name Structural and Multidisciplinary Optimization
    150 schema:publisher Springer Nature
    151 rdf:type schema:Periodical
    152 sg:person.013416013753.61 schema:affiliation grid-institutes:grid.30055.33
    153 schema:familyName Zhao
    154 schema:givenName D. Y.
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013416013753.61
    156 rdf:type schema:Person
    157 sg:person.013737134527.73 schema:affiliation grid-institutes:grid.30055.33
    158 schema:familyName Wang
    159 schema:givenName M. J.
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013737134527.73
    161 rdf:type schema:Person
    162 sg:person.014337701640.07 schema:affiliation grid-institutes:grid.30055.33
    163 schema:familyName Yan
    164 schema:givenName J.
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014337701640.07
    166 rdf:type schema:Person
    167 sg:person.015435755041.18 schema:affiliation grid-institutes:grid.30055.33
    168 schema:familyName Shi
    169 schema:givenName W. L.
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015435755041.18
    171 rdf:type schema:Person
    172 sg:pub.10.1007/s00033-017-0796-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084764657
    173 https://doi.org/10.1007/s00033-017-0796-6
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s00158-005-0554-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041855569
    176 https://doi.org/10.1007/s00158-005-0554-9
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s00158-010-0594-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039475508
    179 https://doi.org/10.1007/s00158-010-0594-7
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s001580050179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033115735
    182 https://doi.org/10.1007/s001580050179
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s00289-015-1517-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1046932114
    185 https://doi.org/10.1007/s00289-015-1517-y
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s00466-012-0773-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1010711860
    188 https://doi.org/10.1007/s00466-012-0773-z
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s100510050650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016318892
    191 https://doi.org/10.1007/s100510050650
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s10409-015-0492-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053538457
    194 https://doi.org/10.1007/s10409-015-0492-8
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s11249-005-9067-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024550893
    197 https://doi.org/10.1007/s11249-005-9067-3
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s13239-015-0235-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000794007
    200 https://doi.org/10.1007/s13239-015-0235-9
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s13239-018-00397-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110507246
    203 https://doi.org/10.1007/s13239-018-00397-9
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s13239-019-00401-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1111618757
    206 https://doi.org/10.1007/s13239-019-00401-w
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nrcardio.2013.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029824929
    209 https://doi.org/10.1038/nrcardio.2013.184
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nrcardio.2016.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046919816
    212 https://doi.org/10.1038/nrcardio.2016.184
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1186/s12938-016-0268-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018155020
    215 https://doi.org/10.1186/s12938-016-0268-9
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1557/jmr.1999.0554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015307307
    218 https://doi.org/10.1557/jmr.1999.0554
    219 rdf:type schema:CreativeWork
    220 grid-institutes:grid.30055.33 schema:alternateName School of Mechanical Engineering, Dalian University of Technology, 116024, Dalian, China
    221 State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, 116024, Dalian, China
    222 schema:name School of Mechanical Engineering, Dalian University of Technology, 116024, Dalian, China
    223 State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, 116024, Dalian, China
    224 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...