Toward multiphysics multiscale concurrent topology optimization for lightweight structures with high heat conductivity and high stiffness using MATLAB View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07-09

AUTHORS

Musaddiq Al Ali, Masatoshi Shimoda

ABSTRACT

Structural light weighting is vital for increasing energy efficiency and reducing CO2 emissions. Furthermore, for many applications, high heat conductivity is necessary to attain efficient energy transfer while increasing the product stiffness and reducing the weight. In recent years, with the development of 3D printing technology, attention has been directed toward porous materials that greatly contribute to weight reduction. As such, this educational research is aiming toward introducing the methodology of concurrent multiscale topology optimization attaining designs of lightweight, high heat conductive, and stiff porous structures utilizing multi-objective optimization method. The normalized multi-objective function is used in this research to maximize heat conductivity and stiffness. Therefore, the objective criteria are consisting of heat and mechanical compliance minimization. Utilizing the SIMP method, the multiscale sensitivity analysis, and optimization formulation were driven theoretically using adjoint method to reduce the computational cost and presented in a MATLAB code. 2D cases were studied, and a proper Pareto front was attained. The results showed good coupling of the macro and microscale design. The MATLAB code is explained and included in the appendix and it is intended for educational purposes. More... »

PAGES

207

References to SciGraph publications

  • 1989-12. Optimal shape design as a material distribution problem in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2001-04. A 99 line topology optimization code written in Matlab in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2010-11-20. Efficient topology optimization in MATLAB using 88 lines of code in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2006-03-02. Topology optimization of heat conduction problems using the finite volume method in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2016-04-13. Industrial application of topology optimization for combined conductive and convective heat transfer problems in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2017. Non-Convex Multi-Objective Optimization in NONE
  • 2020-08-24. A new generation 99 line Matlab code for compliance topology optimization and its extension to 3D in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2014-11-19. Matlab code for a level set-based topology optimization method using a reaction diffusion equation in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2021-03-08. Topology optimization of multi-scale structures: a review in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2010-10-20. Global Optimality Conditions for Classes of Non-convex Multi-objective Quadratic Optimization Problems in VARIATIONAL ANALYSIS AND GENERALIZED DIFFERENTIATION IN OPTIMIZATION AND CONTROL
  • 2006-01-01. The Phase-Field Method in Optimal Design in IUTAM SYMPOSIUM ON TOPOLOGICAL DESIGN OPTIMIZATION OF STRUCTURES, MACHINES AND MATERIALS
  • 2005-11-23. Multiple stiffness topology optimizations of continuum structures in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2009-09-25. A discrete level-set topology optimization code written in Matlab in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2018-06-01. Concurrent topology optimization design of structures and non-uniform parameterized lattice microstructures in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2013-07-03. Parameter-free optimum design method of stiffeners on thin-walled structures in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2002-08. Hierarchical optimization of material and structure in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2020-06-12. An ANSYS APDL code for topology optimization of structures with multi-constraints using the BESO method with dynamic evolution rate (DER-BESO) in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2019. Computational Homogenization of Heterogeneous Materials with Finite Elements in NONE
  • 1993-12. On finding the optimal distribution of material properties in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2018-02-13. An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 1992-03. A comparison of homogenization and standard mechanics analyses for periodic porous composites in COMPUTATIONAL MECHANICS
  • 2019-02-15. Topology optimization of thermal–fluid problem using the MMC-based approach in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00158-022-03291-0

    DOI

    http://dx.doi.org/10.1007/s00158-022-03291-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149358650


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Advanced Science and Technology, Toyota Technological Institute, 2-12-1, Hisakata, Tenpaku-ku, 468-8511, Nagoya, Aichi, Japan", 
              "id": "http://www.grid.ac/institutes/grid.265129.b", 
              "name": [
                "Department of Advanced Science and Technology, Toyota Technological Institute, 2-12-1, Hisakata, Tenpaku-ku, 468-8511, Nagoya, Aichi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ali", 
            "givenName": "Musaddiq Al", 
            "id": "sg:person.07641174373.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07641174373.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Advanced Science and Technology, Toyota Technological Institute, 2-12-1, Hisakata, Tenpaku-ku, 468-8511, Nagoya, Aichi, Japan", 
              "id": "http://www.grid.ac/institutes/grid.265129.b", 
              "name": [
                "Department of Advanced Science and Technology, Toyota Technological Institute, 2-12-1, Hisakata, Tenpaku-ku, 468-8511, Nagoya, Aichi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shimoda", 
            "givenName": "Masatoshi", 
            "id": "sg:person.015553224061.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015553224061.61"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00158-014-1190-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041125157", 
              "https://doi.org/10.1007/s00158-014-1190-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-010-0594-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039475508", 
              "https://doi.org/10.1007/s00158-010-0594-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01650949", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025827300", 
              "https://doi.org/10.1007/bf01650949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/1-4020-4752-5_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015428909", 
              "https://doi.org/10.1007/1-4020-4752-5_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-020-02588-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128444309", 
              "https://doi.org/10.1007/s00158-020-02588-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-009-0430-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029119315", 
              "https://doi.org/10.1007/s00158-009-0430-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-016-1433-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049184134", 
              "https://doi.org/10.1007/s00158-016-1433-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01743590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008400888", 
              "https://doi.org/10.1007/bf01743590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-61007-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090920093", 
              "https://doi.org/10.1007/978-3-319-61007-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-0437-9_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034882145", 
              "https://doi.org/10.1007/978-1-4419-0437-9_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001580050176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031894588", 
              "https://doi.org/10.1007/s001580050176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-019-02206-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112158310", 
              "https://doi.org/10.1007/s00158-019-02206-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-002-0209-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003431476", 
              "https://doi.org/10.1007/s00158-002-0209-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-020-02629-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130303639", 
              "https://doi.org/10.1007/s00158-020-02629-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-021-02881-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1136233112", 
              "https://doi.org/10.1007/s00158-021-02881-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-018-2009-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104345000", 
              "https://doi.org/10.1007/s00158-018-2009-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00369853", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023231725", 
              "https://doi.org/10.1007/bf00369853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-013-0954-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019891645", 
              "https://doi.org/10.1007/s00158-013-0954-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-018-1904-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101000981", 
              "https://doi.org/10.1007/s00158-018-1904-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-005-0584-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030355112", 
              "https://doi.org/10.1007/s00158-005-0584-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-18383-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117043784", 
              "https://doi.org/10.1007/978-3-030-18383-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-005-0084-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015678931", 
              "https://doi.org/10.1007/s00170-005-0084-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-07-09", 
        "datePublishedReg": "2022-07-09", 
        "description": "Structural light weighting is vital for increasing energy efficiency and reducing CO2 emissions. Furthermore, for many applications, high heat conductivity is necessary to attain efficient energy transfer while increasing the product stiffness and reducing the weight. In recent years, with the development of 3D printing technology, attention has been directed toward porous materials that greatly contribute to weight reduction. As such, this educational research is aiming toward introducing the methodology of concurrent multiscale topology optimization attaining designs of lightweight, high heat conductive, and stiff porous structures utilizing multi-objective optimization method. The normalized multi-objective function is used in this research to maximize heat conductivity and stiffness. Therefore, the objective criteria are consisting of heat and mechanical compliance minimization. Utilizing the SIMP method, the multiscale sensitivity analysis, and optimization formulation were driven theoretically using adjoint method to reduce the computational cost and presented in a MATLAB code. 2D cases were studied, and a proper Pareto front was attained. The results showed good coupling of the macro and microscale design. The MATLAB code is explained and included in the appendix and it is intended for educational purposes.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00158-022-03291-0", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.9678838", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1050630", 
            "issn": [
              "1615-147X", 
              "1615-1488"
            ], 
            "name": "Structural and Multidisciplinary Optimization", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "65"
          }
        ], 
        "keywords": [
          "high heat conductivity", 
          "heat conductivity", 
          "concurrent topology optimization", 
          "multi-objective optimization method", 
          "lightweight structures", 
          "light weighting", 
          "MATLAB code", 
          "high stiffness", 
          "multi-objective function", 
          "porous structure", 
          "porous materials", 
          "topology optimization", 
          "printing technology", 
          "compliance minimization", 
          "SIMP method", 
          "adjoint method", 
          "microscale design", 
          "optimization formulation", 
          "optimization method", 
          "Pareto front", 
          "CO2 emissions", 
          "energy efficiency", 
          "good coupling", 
          "conductivity", 
          "computational cost", 
          "stiffness", 
          "sensitivity analysis", 
          "efficient energy transfer", 
          "conductive", 
          "design", 
          "weight reduction", 
          "heat", 
          "MATLAB", 
          "method", 
          "structure", 
          "energy transfer", 
          "materials", 
          "minimization", 
          "optimization", 
          "efficiency", 
          "emission", 
          "front", 
          "technology", 
          "formulation", 
          "code", 
          "applications", 
          "recent years", 
          "cost", 
          "coupling", 
          "transfer", 
          "appendix", 
          "methodology", 
          "weighting", 
          "objective criteria", 
          "educational purposes", 
          "reduction", 
          "function", 
          "results", 
          "research", 
          "analysis", 
          "cases", 
          "criteria", 
          "development", 
          "purpose", 
          "attention", 
          "weight", 
          "educational research", 
          "years"
        ], 
        "name": "Toward multiphysics multiscale concurrent topology optimization for lightweight structures with high heat conductivity and high stiffness using MATLAB", 
        "pagination": "207", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149358650"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00158-022-03291-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00158-022-03291-0", 
          "https://app.dimensions.ai/details/publication/pub.1149358650"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_928.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00158-022-03291-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00158-022-03291-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00158-022-03291-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00158-022-03291-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00158-022-03291-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    222 TRIPLES      21 PREDICATES      114 URIs      84 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00158-022-03291-0 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N16336372ec82405ba1549ebc37183fd6
    4 schema:citation sg:pub.10.1007/1-4020-4752-5_21
    5 sg:pub.10.1007/978-1-4419-0437-9_9
    6 sg:pub.10.1007/978-3-030-18383-7
    7 sg:pub.10.1007/978-3-319-61007-8
    8 sg:pub.10.1007/bf00369853
    9 sg:pub.10.1007/bf01650949
    10 sg:pub.10.1007/bf01743590
    11 sg:pub.10.1007/s00158-002-0209-z
    12 sg:pub.10.1007/s00158-005-0584-3
    13 sg:pub.10.1007/s00158-009-0430-0
    14 sg:pub.10.1007/s00158-010-0594-7
    15 sg:pub.10.1007/s00158-013-0954-1
    16 sg:pub.10.1007/s00158-014-1190-z
    17 sg:pub.10.1007/s00158-016-1433-2
    18 sg:pub.10.1007/s00158-018-1904-8
    19 sg:pub.10.1007/s00158-018-2009-0
    20 sg:pub.10.1007/s00158-019-02206-w
    21 sg:pub.10.1007/s00158-020-02588-2
    22 sg:pub.10.1007/s00158-020-02629-w
    23 sg:pub.10.1007/s00158-021-02881-8
    24 sg:pub.10.1007/s001580050176
    25 sg:pub.10.1007/s00170-005-0084-z
    26 schema:datePublished 2022-07-09
    27 schema:datePublishedReg 2022-07-09
    28 schema:description Structural light weighting is vital for increasing energy efficiency and reducing CO2 emissions. Furthermore, for many applications, high heat conductivity is necessary to attain efficient energy transfer while increasing the product stiffness and reducing the weight. In recent years, with the development of 3D printing technology, attention has been directed toward porous materials that greatly contribute to weight reduction. As such, this educational research is aiming toward introducing the methodology of concurrent multiscale topology optimization attaining designs of lightweight, high heat conductive, and stiff porous structures utilizing multi-objective optimization method. The normalized multi-objective function is used in this research to maximize heat conductivity and stiffness. Therefore, the objective criteria are consisting of heat and mechanical compliance minimization. Utilizing the SIMP method, the multiscale sensitivity analysis, and optimization formulation were driven theoretically using adjoint method to reduce the computational cost and presented in a MATLAB code. 2D cases were studied, and a proper Pareto front was attained. The results showed good coupling of the macro and microscale design. The MATLAB code is explained and included in the appendix and it is intended for educational purposes.
    29 schema:genre article
    30 schema:isAccessibleForFree false
    31 schema:isPartOf Ncd55aa8d8723454487aa99486ed8619d
    32 Nf112090c78ae462ca6da98561eaa292c
    33 sg:journal.1050630
    34 schema:keywords CO2 emissions
    35 MATLAB
    36 MATLAB code
    37 Pareto front
    38 SIMP method
    39 adjoint method
    40 analysis
    41 appendix
    42 applications
    43 attention
    44 cases
    45 code
    46 compliance minimization
    47 computational cost
    48 concurrent topology optimization
    49 conductive
    50 conductivity
    51 cost
    52 coupling
    53 criteria
    54 design
    55 development
    56 educational purposes
    57 educational research
    58 efficiency
    59 efficient energy transfer
    60 emission
    61 energy efficiency
    62 energy transfer
    63 formulation
    64 front
    65 function
    66 good coupling
    67 heat
    68 heat conductivity
    69 high heat conductivity
    70 high stiffness
    71 light weighting
    72 lightweight structures
    73 materials
    74 method
    75 methodology
    76 microscale design
    77 minimization
    78 multi-objective function
    79 multi-objective optimization method
    80 objective criteria
    81 optimization
    82 optimization formulation
    83 optimization method
    84 porous materials
    85 porous structure
    86 printing technology
    87 purpose
    88 recent years
    89 reduction
    90 research
    91 results
    92 sensitivity analysis
    93 stiffness
    94 structure
    95 technology
    96 topology optimization
    97 transfer
    98 weight
    99 weight reduction
    100 weighting
    101 years
    102 schema:name Toward multiphysics multiscale concurrent topology optimization for lightweight structures with high heat conductivity and high stiffness using MATLAB
    103 schema:pagination 207
    104 schema:productId Na42a00503bb04aa78daad557f29d3203
    105 Nfe22292950a34ea891c9db3c0ec89f1f
    106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149358650
    107 https://doi.org/10.1007/s00158-022-03291-0
    108 schema:sdDatePublished 2022-09-02T16:08
    109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    110 schema:sdPublisher N00ffe04a89624f7d8e66276108682143
    111 schema:url https://doi.org/10.1007/s00158-022-03291-0
    112 sgo:license sg:explorer/license/
    113 sgo:sdDataset articles
    114 rdf:type schema:ScholarlyArticle
    115 N00ffe04a89624f7d8e66276108682143 schema:name Springer Nature - SN SciGraph project
    116 rdf:type schema:Organization
    117 N16336372ec82405ba1549ebc37183fd6 rdf:first sg:person.07641174373.49
    118 rdf:rest Nee160b7f1e3b4f2da57c88b72e0b57d8
    119 Na42a00503bb04aa78daad557f29d3203 schema:name dimensions_id
    120 schema:value pub.1149358650
    121 rdf:type schema:PropertyValue
    122 Ncd55aa8d8723454487aa99486ed8619d schema:volumeNumber 65
    123 rdf:type schema:PublicationVolume
    124 Nee160b7f1e3b4f2da57c88b72e0b57d8 rdf:first sg:person.015553224061.61
    125 rdf:rest rdf:nil
    126 Nf112090c78ae462ca6da98561eaa292c schema:issueNumber 7
    127 rdf:type schema:PublicationIssue
    128 Nfe22292950a34ea891c9db3c0ec89f1f schema:name doi
    129 schema:value 10.1007/s00158-022-03291-0
    130 rdf:type schema:PropertyValue
    131 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Mathematical Sciences
    133 rdf:type schema:DefinedTerm
    134 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Numerical and Computational Mathematics
    136 rdf:type schema:DefinedTerm
    137 sg:grant.9678838 http://pending.schema.org/fundedItem sg:pub.10.1007/s00158-022-03291-0
    138 rdf:type schema:MonetaryGrant
    139 sg:journal.1050630 schema:issn 1615-147X
    140 1615-1488
    141 schema:name Structural and Multidisciplinary Optimization
    142 schema:publisher Springer Nature
    143 rdf:type schema:Periodical
    144 sg:person.015553224061.61 schema:affiliation grid-institutes:grid.265129.b
    145 schema:familyName Shimoda
    146 schema:givenName Masatoshi
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015553224061.61
    148 rdf:type schema:Person
    149 sg:person.07641174373.49 schema:affiliation grid-institutes:grid.265129.b
    150 schema:familyName Ali
    151 schema:givenName Musaddiq Al
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07641174373.49
    153 rdf:type schema:Person
    154 sg:pub.10.1007/1-4020-4752-5_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015428909
    155 https://doi.org/10.1007/1-4020-4752-5_21
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/978-1-4419-0437-9_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034882145
    158 https://doi.org/10.1007/978-1-4419-0437-9_9
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/978-3-030-18383-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117043784
    161 https://doi.org/10.1007/978-3-030-18383-7
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/978-3-319-61007-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090920093
    164 https://doi.org/10.1007/978-3-319-61007-8
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/bf00369853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023231725
    167 https://doi.org/10.1007/bf00369853
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/bf01650949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025827300
    170 https://doi.org/10.1007/bf01650949
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/bf01743590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008400888
    173 https://doi.org/10.1007/bf01743590
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s00158-002-0209-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1003431476
    176 https://doi.org/10.1007/s00158-002-0209-z
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s00158-005-0584-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030355112
    179 https://doi.org/10.1007/s00158-005-0584-3
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s00158-009-0430-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029119315
    182 https://doi.org/10.1007/s00158-009-0430-0
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s00158-010-0594-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039475508
    185 https://doi.org/10.1007/s00158-010-0594-7
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s00158-013-0954-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019891645
    188 https://doi.org/10.1007/s00158-013-0954-1
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s00158-014-1190-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1041125157
    191 https://doi.org/10.1007/s00158-014-1190-z
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s00158-016-1433-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049184134
    194 https://doi.org/10.1007/s00158-016-1433-2
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s00158-018-1904-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101000981
    197 https://doi.org/10.1007/s00158-018-1904-8
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s00158-018-2009-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104345000
    200 https://doi.org/10.1007/s00158-018-2009-0
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s00158-019-02206-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1112158310
    203 https://doi.org/10.1007/s00158-019-02206-w
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s00158-020-02588-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128444309
    206 https://doi.org/10.1007/s00158-020-02588-2
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s00158-020-02629-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1130303639
    209 https://doi.org/10.1007/s00158-020-02629-w
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s00158-021-02881-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136233112
    212 https://doi.org/10.1007/s00158-021-02881-8
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/s001580050176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031894588
    215 https://doi.org/10.1007/s001580050176
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s00170-005-0084-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1015678931
    218 https://doi.org/10.1007/s00170-005-0084-z
    219 rdf:type schema:CreativeWork
    220 grid-institutes:grid.265129.b schema:alternateName Department of Advanced Science and Technology, Toyota Technological Institute, 2-12-1, Hisakata, Tenpaku-ku, 468-8511, Nagoya, Aichi, Japan
    221 schema:name Department of Advanced Science and Technology, Toyota Technological Institute, 2-12-1, Hisakata, Tenpaku-ku, 468-8511, Nagoya, Aichi, Japan
    222 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...