A surrogate model to accelerate non-intrusive global–local simulations of cracked steel structures View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-07-09

AUTHORS

Travis B. Fillmore, Zihan Wu, Manuel A. Vega, Zhen Hu, Michael D. Todd

ABSTRACT

Physics-based digital twins often require many computations to diagnose current and predict future damage states in structures. This research proposes a novel iterative global–local method, where the local numerical model is replaced with a surrogate to simulate cracking quickly on large steel structures. The iterative global–local method bridges the scales from the operational level of a large steel structure to that of a cracked component. The linear global domain is efficiently simulated using static condensation, and the cracked local domain is quickly simulated using the adaptive surrogate modeling method proposed herein. This work compares solution time and accuracy of the proposed surrogate iterative global–local method with a reference model, a submodeling model, and an iterative global–local method with no surrogate model for the local domain. It is found that the surrogate iterative global–local method gives the fastest solution time with comparatively accurate results. More... »

PAGES

208

References to SciGraph publications

  • 2018-02-27. Non-invasive global–local coupling as a Schwarz domain decomposition method: acceleration and generalization in ADVANCED MODELING AND SIMULATION IN ENGINEERING SCIENCES
  • 2021-10-24. Diagnosis, Prognosis, and Maintenance Decision Making for Civil Infrastructure: Bayesian Data Analytics and Machine Learning in STRUCTURAL HEALTH MONITORING BASED ON DATA SCIENCE TECHNIQUES
  • 2009-02-10. Non-intrusive and exact global/local techniques for structural problems with local plasticity in COMPUTATIONAL MECHANICS
  • 2020-02-09. Non Intrusive Global/Local Coupling Techniques in Solid Mechanics: An Introduction to Different Coupling Strategies and Acceleration Techniques in MODELING IN ENGINEERING USING INNOVATIVE NUMERICAL METHODS FOR SOLIDS AND FLUIDS
  • 2018-02-12. A hierarchical non-intrusive algorithm for the generalized finite element method in ADVANCED MODELING AND SIMULATION IN ENGINEERING SCIENCES
  • 2017-05-15. A cooperative radial basis function method for variable-fidelity surrogate modeling in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2020-09-04. The heat source layout optimization using deep learning surrogate modeling in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2017-07-12. Sequential exploration-exploitation with dynamic trade-off for efficient reliability analysis of complex engineered systems in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2018-01-05. Multiscale analysis of complex aeronautical structures using robust non-intrusive coupling in ADVANCED MODELING AND SIMULATION IN ENGINEERING SCIENCES
  • 2003. The Design and Analysis of Computer Experiments in NONE
  • 2013-06-04. Local/global non-intrusive crack propagation simulation using a multigrid X-FEM solver in COMPUTATIONAL MECHANICS
  • 2017-06-24. A surrogate modeling approach for reliability analysis of a multidisciplinary system with spatio-temporal output in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2015-10-29. Global sensitivity analysis-enhanced surrogate (GSAS) modeling for reliability analysis in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2021-07-14. Surrogate modeling: tricks that endured the test of time and some recent developments in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2018-09-18. Multi-objective optimization for design under uncertainty problems through surrogate modeling in augmented input space in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2021-01-12. Kriging-based reliability analysis considering predictive uncertainty reduction in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00158-022-03287-w

    DOI

    http://dx.doi.org/10.1007/s00158-022-03287-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149358649


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Civil Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Coastal and Hydraulics Laboratory, Engineer Research Development Center, 3909 Halls Ferry Rd, 39180, Vicksburg, MS, USA", 
              "id": "http://www.grid.ac/institutes/grid.417553.1", 
              "name": [
                "Coastal and Hydraulics Laboratory, Engineer Research Development Center, 3909 Halls Ferry Rd, 39180, Vicksburg, MS, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fillmore", 
            "givenName": "Travis B.", 
            "id": "sg:person.014001706220.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014001706220.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive Mail Code 0085, 92093, La Jolla, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive Mail Code 0085, 92093, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Zihan", 
            "id": "sg:person.011521516125.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011521516125.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Los Alamos National Laboratory, P.O. Box 1663, 87545, Los Alamos, NM, USA", 
              "id": "http://www.grid.ac/institutes/grid.148313.c", 
              "name": [
                "Los Alamos National Laboratory, P.O. Box 1663, 87545, Los Alamos, NM, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vega", 
            "givenName": "Manuel A.", 
            "id": "sg:person.011165613577.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011165613577.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Industrial and Manufacturing Systems Engineering, University of Michigan-Dearborn, 4901 Evergreen Rd, 48128, Dearborn, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.266717.3", 
              "name": [
                "Department of Industrial and Manufacturing Systems Engineering, University of Michigan-Dearborn, 4901 Evergreen Rd, 48128, Dearborn, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hu", 
            "givenName": "Zhen", 
            "id": "sg:person.011034355661.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011034355661.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive Mail Code 0085, 92093, La Jolla, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive Mail Code 0085, 92093, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Todd", 
            "givenName": "Michael D.", 
            "id": "sg:person.01124335240.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124335240.89"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00158-021-03001-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1139690751", 
              "https://doi.org/10.1007/s00158-021-03001-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-015-1347-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003068138", 
              "https://doi.org/10.1007/s00158-015-1347-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40323-018-0097-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101229064", 
              "https://doi.org/10.1186/s40323-018-0097-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-020-02659-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130574517", 
              "https://doi.org/10.1007/s00158-020-02659-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-81716-9_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1142120445", 
              "https://doi.org/10.1007/978-3-030-81716-9_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-3799-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043937460", 
              "https://doi.org/10.1007/978-1-4757-3799-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-018-2069-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107083325", 
              "https://doi.org/10.1007/s00158-018-2069-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-020-02831-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134519458", 
              "https://doi.org/10.1007/s00158-020-02831-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40323-018-0096-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100992429", 
              "https://doi.org/10.1186/s40323-018-0096-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00466-013-0882-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004017110", 
              "https://doi.org/10.1007/s00466-013-0882-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-017-1704-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085418245", 
              "https://doi.org/10.1007/s00158-017-1704-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-017-1737-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086152226", 
              "https://doi.org/10.1007/s00158-017-1737-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-017-1748-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090598736", 
              "https://doi.org/10.1007/s00158-017-1748-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-37518-8_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124683111", 
              "https://doi.org/10.1007/978-3-030-37518-8_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00466-009-0372-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014799651", 
              "https://doi.org/10.1007/s00466-009-0372-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40323-017-0094-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100192679", 
              "https://doi.org/10.1186/s40323-017-0094-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-07-09", 
        "datePublishedReg": "2022-07-09", 
        "description": "Physics-based digital twins often require many computations to diagnose current and predict future damage states in structures. This research proposes a novel iterative global\u2013local method, where the local numerical model is replaced with a surrogate to simulate cracking quickly on large steel structures. The iterative global\u2013local method bridges the scales from the operational level of a large steel structure to that of a cracked component. The linear global domain is efficiently simulated using static condensation, and the cracked local domain is quickly simulated using the adaptive surrogate modeling method proposed herein. This work compares solution time and accuracy of the proposed surrogate iterative global\u2013local method with a reference model, a submodeling model, and an iterative global\u2013local method with no surrogate model for the local domain. It is found that the surrogate iterative global\u2013local method gives the fastest solution time with comparatively accurate results.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00158-022-03287-w", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1050630", 
            "issn": [
              "1615-147X", 
              "1615-1488"
            ], 
            "name": "Structural and Multidisciplinary Optimization", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "65"
          }
        ], 
        "keywords": [
          "global-local method", 
          "large steel structures", 
          "steel structures", 
          "future damage state", 
          "surrogate model", 
          "local numerical model", 
          "surrogate modeling method", 
          "numerical model", 
          "damage state", 
          "solution time", 
          "static condensation", 
          "faster solution times", 
          "digital twin", 
          "modeling method", 
          "reference model", 
          "accurate results", 
          "local domain", 
          "global domain", 
          "structure", 
          "method", 
          "simulations", 
          "model", 
          "operational level", 
          "accuracy", 
          "time", 
          "work", 
          "computation", 
          "components", 
          "condensation", 
          "domain", 
          "results", 
          "twins", 
          "scale", 
          "state", 
          "surrogate", 
          "research", 
          "levels"
        ], 
        "name": "A surrogate model to accelerate non-intrusive global\u2013local simulations of cracked steel structures", 
        "pagination": "208", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149358649"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00158-022-03287-w"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00158-022-03287-w", 
          "https://app.dimensions.ai/details/publication/pub.1149358649"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_950.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00158-022-03287-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00158-022-03287-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00158-022-03287-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00158-022-03287-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00158-022-03287-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    195 TRIPLES      21 PREDICATES      77 URIs      53 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00158-022-03287-w schema:about anzsrc-for:09
    2 anzsrc-for:0905
    3 schema:author N7377900e005b4f3ca7f17cc7268c8c79
    4 schema:citation sg:pub.10.1007/978-1-4757-3799-8
    5 sg:pub.10.1007/978-3-030-37518-8_6
    6 sg:pub.10.1007/978-3-030-81716-9_3
    7 sg:pub.10.1007/s00158-015-1347-4
    8 sg:pub.10.1007/s00158-017-1704-6
    9 sg:pub.10.1007/s00158-017-1737-x
    10 sg:pub.10.1007/s00158-017-1748-7
    11 sg:pub.10.1007/s00158-018-2069-1
    12 sg:pub.10.1007/s00158-020-02659-4
    13 sg:pub.10.1007/s00158-020-02831-w
    14 sg:pub.10.1007/s00158-021-03001-2
    15 sg:pub.10.1007/s00466-009-0372-9
    16 sg:pub.10.1007/s00466-013-0882-3
    17 sg:pub.10.1186/s40323-017-0094-z
    18 sg:pub.10.1186/s40323-018-0096-5
    19 sg:pub.10.1186/s40323-018-0097-4
    20 schema:datePublished 2022-07-09
    21 schema:datePublishedReg 2022-07-09
    22 schema:description Physics-based digital twins often require many computations to diagnose current and predict future damage states in structures. This research proposes a novel iterative global–local method, where the local numerical model is replaced with a surrogate to simulate cracking quickly on large steel structures. The iterative global–local method bridges the scales from the operational level of a large steel structure to that of a cracked component. The linear global domain is efficiently simulated using static condensation, and the cracked local domain is quickly simulated using the adaptive surrogate modeling method proposed herein. This work compares solution time and accuracy of the proposed surrogate iterative global–local method with a reference model, a submodeling model, and an iterative global–local method with no surrogate model for the local domain. It is found that the surrogate iterative global–local method gives the fastest solution time with comparatively accurate results.
    23 schema:genre article
    24 schema:isAccessibleForFree true
    25 schema:isPartOf N520450ebdf76477ba33d231767c073ed
    26 Nc1bf345185f84b1489a812747154da6d
    27 sg:journal.1050630
    28 schema:keywords accuracy
    29 accurate results
    30 components
    31 computation
    32 condensation
    33 damage state
    34 digital twin
    35 domain
    36 faster solution times
    37 future damage state
    38 global domain
    39 global-local method
    40 large steel structures
    41 levels
    42 local domain
    43 local numerical model
    44 method
    45 model
    46 modeling method
    47 numerical model
    48 operational level
    49 reference model
    50 research
    51 results
    52 scale
    53 simulations
    54 solution time
    55 state
    56 static condensation
    57 steel structures
    58 structure
    59 surrogate
    60 surrogate model
    61 surrogate modeling method
    62 time
    63 twins
    64 work
    65 schema:name A surrogate model to accelerate non-intrusive global–local simulations of cracked steel structures
    66 schema:pagination 208
    67 schema:productId N1793e91f4f0d4e6eae49c7b7cd7cac5d
    68 Nd357fa6de16446c6add5c10658d346d5
    69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149358649
    70 https://doi.org/10.1007/s00158-022-03287-w
    71 schema:sdDatePublished 2022-09-02T16:08
    72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    73 schema:sdPublisher N198755cf804241b1aa8b880e31bef396
    74 schema:url https://doi.org/10.1007/s00158-022-03287-w
    75 sgo:license sg:explorer/license/
    76 sgo:sdDataset articles
    77 rdf:type schema:ScholarlyArticle
    78 N1793e91f4f0d4e6eae49c7b7cd7cac5d schema:name doi
    79 schema:value 10.1007/s00158-022-03287-w
    80 rdf:type schema:PropertyValue
    81 N198755cf804241b1aa8b880e31bef396 schema:name Springer Nature - SN SciGraph project
    82 rdf:type schema:Organization
    83 N31873039c5bb46ee88a9dbe63e872df1 rdf:first sg:person.011165613577.55
    84 rdf:rest N74c988681cc74692b53b6e62f82c10a3
    85 N520450ebdf76477ba33d231767c073ed schema:volumeNumber 65
    86 rdf:type schema:PublicationVolume
    87 N5578e199a9e94182a5b9e826f3766e5a rdf:first sg:person.01124335240.89
    88 rdf:rest rdf:nil
    89 N7377900e005b4f3ca7f17cc7268c8c79 rdf:first sg:person.014001706220.20
    90 rdf:rest Nb5e46626e1e94093963351c357dff4aa
    91 N74c988681cc74692b53b6e62f82c10a3 rdf:first sg:person.011034355661.40
    92 rdf:rest N5578e199a9e94182a5b9e826f3766e5a
    93 Nb5e46626e1e94093963351c357dff4aa rdf:first sg:person.011521516125.00
    94 rdf:rest N31873039c5bb46ee88a9dbe63e872df1
    95 Nc1bf345185f84b1489a812747154da6d schema:issueNumber 7
    96 rdf:type schema:PublicationIssue
    97 Nd357fa6de16446c6add5c10658d346d5 schema:name dimensions_id
    98 schema:value pub.1149358649
    99 rdf:type schema:PropertyValue
    100 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Engineering
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Civil Engineering
    105 rdf:type schema:DefinedTerm
    106 sg:journal.1050630 schema:issn 1615-147X
    107 1615-1488
    108 schema:name Structural and Multidisciplinary Optimization
    109 schema:publisher Springer Nature
    110 rdf:type schema:Periodical
    111 sg:person.011034355661.40 schema:affiliation grid-institutes:grid.266717.3
    112 schema:familyName Hu
    113 schema:givenName Zhen
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011034355661.40
    115 rdf:type schema:Person
    116 sg:person.011165613577.55 schema:affiliation grid-institutes:grid.148313.c
    117 schema:familyName Vega
    118 schema:givenName Manuel A.
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011165613577.55
    120 rdf:type schema:Person
    121 sg:person.01124335240.89 schema:affiliation grid-institutes:grid.266100.3
    122 schema:familyName Todd
    123 schema:givenName Michael D.
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124335240.89
    125 rdf:type schema:Person
    126 sg:person.011521516125.00 schema:affiliation grid-institutes:grid.266100.3
    127 schema:familyName Wu
    128 schema:givenName Zihan
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011521516125.00
    130 rdf:type schema:Person
    131 sg:person.014001706220.20 schema:affiliation grid-institutes:grid.417553.1
    132 schema:familyName Fillmore
    133 schema:givenName Travis B.
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014001706220.20
    135 rdf:type schema:Person
    136 sg:pub.10.1007/978-1-4757-3799-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043937460
    137 https://doi.org/10.1007/978-1-4757-3799-8
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/978-3-030-37518-8_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124683111
    140 https://doi.org/10.1007/978-3-030-37518-8_6
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/978-3-030-81716-9_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142120445
    143 https://doi.org/10.1007/978-3-030-81716-9_3
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/s00158-015-1347-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003068138
    146 https://doi.org/10.1007/s00158-015-1347-4
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/s00158-017-1704-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085418245
    149 https://doi.org/10.1007/s00158-017-1704-6
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s00158-017-1737-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1086152226
    152 https://doi.org/10.1007/s00158-017-1737-x
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s00158-017-1748-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090598736
    155 https://doi.org/10.1007/s00158-017-1748-7
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s00158-018-2069-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107083325
    158 https://doi.org/10.1007/s00158-018-2069-1
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s00158-020-02659-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130574517
    161 https://doi.org/10.1007/s00158-020-02659-4
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s00158-020-02831-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1134519458
    164 https://doi.org/10.1007/s00158-020-02831-w
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s00158-021-03001-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139690751
    167 https://doi.org/10.1007/s00158-021-03001-2
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s00466-009-0372-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014799651
    170 https://doi.org/10.1007/s00466-009-0372-9
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s00466-013-0882-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004017110
    173 https://doi.org/10.1007/s00466-013-0882-3
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1186/s40323-017-0094-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1100192679
    176 https://doi.org/10.1186/s40323-017-0094-z
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1186/s40323-018-0096-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100992429
    179 https://doi.org/10.1186/s40323-018-0096-5
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1186/s40323-018-0097-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101229064
    182 https://doi.org/10.1186/s40323-018-0097-4
    183 rdf:type schema:CreativeWork
    184 grid-institutes:grid.148313.c schema:alternateName Los Alamos National Laboratory, P.O. Box 1663, 87545, Los Alamos, NM, USA
    185 schema:name Los Alamos National Laboratory, P.O. Box 1663, 87545, Los Alamos, NM, USA
    186 rdf:type schema:Organization
    187 grid-institutes:grid.266100.3 schema:alternateName Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive Mail Code 0085, 92093, La Jolla, CA, USA
    188 schema:name Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive Mail Code 0085, 92093, La Jolla, CA, USA
    189 rdf:type schema:Organization
    190 grid-institutes:grid.266717.3 schema:alternateName Department of Industrial and Manufacturing Systems Engineering, University of Michigan-Dearborn, 4901 Evergreen Rd, 48128, Dearborn, MI, USA
    191 schema:name Department of Industrial and Manufacturing Systems Engineering, University of Michigan-Dearborn, 4901 Evergreen Rd, 48128, Dearborn, MI, USA
    192 rdf:type schema:Organization
    193 grid-institutes:grid.417553.1 schema:alternateName Coastal and Hydraulics Laboratory, Engineer Research Development Center, 3909 Halls Ferry Rd, 39180, Vicksburg, MS, USA
    194 schema:name Coastal and Hydraulics Laboratory, Engineer Research Development Center, 3909 Halls Ferry Rd, 39180, Vicksburg, MS, USA
    195 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...