Optimizing supports for additive manufacturing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Grégoire Allaire, Beniamin Bogosel

ABSTRACT

In additive manufacturing process, support structures are often required to ensure the quality of the final built part. In this article, we present mathematical models and their numerical implementations in an optimization loop, which allow us to design optimal support structures. Our models are derived with the requirement that they should be as simple as possible, computationally cheap, and, yet, based on a realistic physical modelling. Supports are optimized with respect to two different physical properties. First, they must support overhanging regions of the structure for improving the stiffness of the supported structure during the building process. Second, supports can help in channeling the heat flux produced by the source term (typically a laser beam) and thus improving the cooling down of the structure during the fabrication process. Of course, more involved constraints or manufacturability conditions could be taken into account, most notably removal of supports. Our work is just a first step, proposing a general framework for support optimization. Our optimization algorithm is based on the level set method and on the computation of shape derivatives by the Hadamard method. In a first approach, only the shape and topology of the supports are optimized, for a given and fixed structure. In a second and more elaborated strategy, both the supports and the structure are optimized, which amounts to a specific multiphase optimization problem. Numerical examples are given in 2D and 3D. More... »

PAGES

1-23

References to SciGraph publications

  • 2016-06. Thickness control in structural optimization via a level set method in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2018-05. Combined optimization of part topology, support structure layout and build orientation for additive manufacturing in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2003. Level Set Methods and Dynamic Implicit Surfaces in NONE
  • 2002-12. A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2018-01. Support structure design in additive manufacturing based on topology optimization in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2013-06. A new approach to the design and optimisation of support structures in additive manufacturing in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2009-06. Sloping wall structure support generation for fused deposition modeling in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2004. Topology Optimization, Theory, Methods, and Applications in NONE
  • 2016. Molding Direction Constraints in Structural Optimization via a Level-Set Method in VARIATIONAL ANALYSIS AND AEROSPACE ENGINEERING
  • 2015. Additive Manufacturing Technologies, 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing in NONE
  • 1984. Optimal Shape Design for Elliptic Systems in NONE
  • 2016-09. Part orientation optimisation for the additive layer manufacture of metal components in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2012-09. Computation of the signed distance function to a discrete contour on adapted triangulation in CALCOLO
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00158-018-2125-x

    DOI

    http://dx.doi.org/10.1007/s00158-018-2125-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107923902


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Centre de Math\u00e9matiques Appliqu\u00e9es", 
              "id": "https://www.grid.ac/institutes/grid.462265.1", 
              "name": [
                "CMAP, Ecole Polytechnique, CNRS, Universit\u00e9 Paris Saclay, 91128, Palaiseau, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Allaire", 
            "givenName": "Gr\u00e9goire", 
            "id": "sg:person.011736502542.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011736502542.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centre de Math\u00e9matiques Appliqu\u00e9es", 
              "id": "https://www.grid.ac/institutes/grid.462265.1", 
              "name": [
                "CMAP, Ecole Polytechnique, CNRS, Universit\u00e9 Paris Saclay, 91128, Palaiseau, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bogosel", 
            "givenName": "Beniamin", 
            "id": "sg:person.012370026113.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012370026113.49"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.matdes.2014.07.043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000996960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2601097.2601153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005430041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-012-4403-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005548235", 
              "https://doi.org/10.1007/s00170-012-4403-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cad.2015.03.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011963922"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10092-011-0051-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012219733", 
              "https://doi.org/10.1007/s10092-011-0051-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-008-1675-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013134123", 
              "https://doi.org/10.1007/s00170-008-1675-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-008-1675-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013134123", 
              "https://doi.org/10.1007/s00170-008-1675-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1016251678", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-05086-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016251678", 
              "https://doi.org/10.1007/978-3-662-05086-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-05086-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016251678", 
              "https://doi.org/10.1007/978-3-662-05086-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2016.08.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016741712"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-015-8151-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018187988", 
              "https://doi.org/10.1007/s00170-015-8151-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-015-8151-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018187988", 
              "https://doi.org/10.1007/s00170-015-8151-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-015-8151-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018187988", 
              "https://doi.org/10.1007/s00170-015-8151-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1020610268", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4939-2113-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020610268", 
              "https://doi.org/10.1007/978-1-4939-2113-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4939-2113-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020610268", 
              "https://doi.org/10.1007/978-1-4939-2113-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-016-1453-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022087922", 
              "https://doi.org/10.1007/s00158-016-1453-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-016-1453-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022087922", 
              "https://doi.org/10.1007/s00158-016-1453-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-87722-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023273798", 
              "https://doi.org/10.1007/978-3-642-87722-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-87722-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023273798", 
              "https://doi.org/10.1007/978-3-642-87722-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/cgf.12437", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025637260"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/fld.2730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029405561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2816795.2818121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030259105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cad.2016.08.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031682007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cad.2016.08.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031682007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cad.2016.08.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031682007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cad.2016.08.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031682007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-45680-5_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034788470", 
              "https://doi.org/10.1007/978-3-319-45680-5_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1020874308076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035462968", 
              "https://doi.org/10.1023/a:1020874308076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1036300795", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/b98879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036300795", 
              "https://doi.org/10.1007/b98879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/b98879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036300795", 
              "https://doi.org/10.1007/b98879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cma.2004.12.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036703608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/jnum-2012-0013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040044386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmsy.2014.07.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041160303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcp.2003.09.032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045900935"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2014.06.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050922312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cma.2003.10.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052189268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2013.01.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052530101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.addma.2016.06.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053631505"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/cocv/2013076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056951977"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/m2an/1986200303711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083426900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apm.2017.02.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083750516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.crma.2017.04.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085117707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-017-1743-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090325100", 
              "https://doi.org/10.1007/s00158-017-1743-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-017-1743-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090325100", 
              "https://doi.org/10.1007/s00158-017-1743-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcp.2017.09.041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091974779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7712/100016.2067.7766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1097307889"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1.9781611973365", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098553842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-017-1877-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100560581", 
              "https://doi.org/10.1007/s00158-017-1877-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.addma.2018.04.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103431724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.addma.2018.04.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103431724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0218202518500501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105687060"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "In additive manufacturing process, support structures are often required to ensure the quality of the final built part. In this article, we present mathematical models and their numerical implementations in an optimization loop, which allow us to design optimal support structures. Our models are derived with the requirement that they should be as simple as possible, computationally cheap, and, yet, based on a realistic physical modelling. Supports are optimized with respect to two different physical properties. First, they must support overhanging regions of the structure for improving the stiffness of the supported structure during the building process. Second, supports can help in channeling the heat flux produced by the source term (typically a laser beam) and thus improving the cooling down of the structure during the fabrication process. Of course, more involved constraints or manufacturability conditions could be taken into account, most notably removal of supports. Our work is just a first step, proposing a general framework for support optimization. Our optimization algorithm is based on the level set method and on the computation of shape derivatives by the Hadamard method. In a first approach, only the shape and topology of the supports are optimized, for a given and fixed structure. In a second and more elaborated strategy, both the supports and the structure are optimized, which amounts to a specific multiphase optimization problem. Numerical examples are given in 2D and 3D.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00158-018-2125-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1050630", 
            "issn": [
              "1615-147X", 
              "1615-1488"
            ], 
            "name": "Structural and Multidisciplinary Optimization", 
            "type": "Periodical"
          }
        ], 
        "name": "Optimizing supports for additive manufacturing", 
        "pagination": "1-23", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b5214c6c0efaed4d6e8e2ea5f62ab0197e91e6e5a3720518e1a44b4085f93701"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00158-018-2125-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107923902"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00158-018-2125-x", 
          "https://app.dimensions.ai/details/publication/pub.1107923902"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T02:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000573.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00158-018-2125-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00158-018-2125-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00158-018-2125-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00158-018-2125-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00158-018-2125-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    195 TRIPLES      21 PREDICATES      66 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00158-018-2125-x schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author Nbfb9efcd89b64d43ae5677f6280d3a73
    4 schema:citation sg:pub.10.1007/978-1-4939-2113-3
    5 sg:pub.10.1007/978-3-319-45680-5_1
    6 sg:pub.10.1007/978-3-642-87722-3
    7 sg:pub.10.1007/978-3-662-05086-6
    8 sg:pub.10.1007/b98879
    9 sg:pub.10.1007/s00158-016-1453-y
    10 sg:pub.10.1007/s00158-017-1743-z
    11 sg:pub.10.1007/s00158-017-1877-z
    12 sg:pub.10.1007/s00170-008-1675-2
    13 sg:pub.10.1007/s00170-012-4403-x
    14 sg:pub.10.1007/s00170-015-8151-6
    15 sg:pub.10.1007/s10092-011-0051-z
    16 sg:pub.10.1023/a:1020874308076
    17 https://app.dimensions.ai/details/publication/pub.1016251678
    18 https://app.dimensions.ai/details/publication/pub.1020610268
    19 https://app.dimensions.ai/details/publication/pub.1036300795
    20 https://doi.org/10.1002/fld.2730
    21 https://doi.org/10.1016/j.addma.2016.06.010
    22 https://doi.org/10.1016/j.addma.2018.04.016
    23 https://doi.org/10.1016/j.apm.2017.02.004
    24 https://doi.org/10.1016/j.cad.2015.03.001
    25 https://doi.org/10.1016/j.cad.2016.08.006
    26 https://doi.org/10.1016/j.cma.2003.10.008
    27 https://doi.org/10.1016/j.cma.2004.12.018
    28 https://doi.org/10.1016/j.crma.2017.04.008
    29 https://doi.org/10.1016/j.jcp.2003.09.032
    30 https://doi.org/10.1016/j.jcp.2017.09.041
    31 https://doi.org/10.1016/j.jmatprotec.2013.01.020
    32 https://doi.org/10.1016/j.jmatprotec.2016.08.006
    33 https://doi.org/10.1016/j.jmsy.2014.07.003
    34 https://doi.org/10.1016/j.matdes.2014.06.015
    35 https://doi.org/10.1016/j.matdes.2014.07.043
    36 https://doi.org/10.1051/cocv/2013076
    37 https://doi.org/10.1051/m2an/1986200303711
    38 https://doi.org/10.1111/cgf.12437
    39 https://doi.org/10.1137/1.9781611973365
    40 https://doi.org/10.1142/s0218202518500501
    41 https://doi.org/10.1145/2601097.2601153
    42 https://doi.org/10.1145/2816795.2818121
    43 https://doi.org/10.1515/jnum-2012-0013
    44 https://doi.org/10.7712/100016.2067.7766
    45 schema:datePublished 2018-12
    46 schema:datePublishedReg 2018-12-01
    47 schema:description In additive manufacturing process, support structures are often required to ensure the quality of the final built part. In this article, we present mathematical models and their numerical implementations in an optimization loop, which allow us to design optimal support structures. Our models are derived with the requirement that they should be as simple as possible, computationally cheap, and, yet, based on a realistic physical modelling. Supports are optimized with respect to two different physical properties. First, they must support overhanging regions of the structure for improving the stiffness of the supported structure during the building process. Second, supports can help in channeling the heat flux produced by the source term (typically a laser beam) and thus improving the cooling down of the structure during the fabrication process. Of course, more involved constraints or manufacturability conditions could be taken into account, most notably removal of supports. Our work is just a first step, proposing a general framework for support optimization. Our optimization algorithm is based on the level set method and on the computation of shape derivatives by the Hadamard method. In a first approach, only the shape and topology of the supports are optimized, for a given and fixed structure. In a second and more elaborated strategy, both the supports and the structure are optimized, which amounts to a specific multiphase optimization problem. Numerical examples are given in 2D and 3D.
    48 schema:genre research_article
    49 schema:inLanguage en
    50 schema:isAccessibleForFree true
    51 schema:isPartOf sg:journal.1050630
    52 schema:name Optimizing supports for additive manufacturing
    53 schema:pagination 1-23
    54 schema:productId N5232f804a2564fcc8d9f5f0fa4cdb3b3
    55 Ncee2f38bd70f4a84a7ebee0d85322d4f
    56 Ne31abd4457cc4e28a55848f71e259ce2
    57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107923902
    58 https://doi.org/10.1007/s00158-018-2125-x
    59 schema:sdDatePublished 2019-04-11T02:24
    60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    61 schema:sdPublisher N903e817a863245ac8148044ce733d456
    62 schema:url https://link.springer.com/10.1007%2Fs00158-018-2125-x
    63 sgo:license sg:explorer/license/
    64 sgo:sdDataset articles
    65 rdf:type schema:ScholarlyArticle
    66 N4127d84ca048428d8b489a365f5597fe rdf:first sg:person.012370026113.49
    67 rdf:rest rdf:nil
    68 N5232f804a2564fcc8d9f5f0fa4cdb3b3 schema:name readcube_id
    69 schema:value b5214c6c0efaed4d6e8e2ea5f62ab0197e91e6e5a3720518e1a44b4085f93701
    70 rdf:type schema:PropertyValue
    71 N903e817a863245ac8148044ce733d456 schema:name Springer Nature - SN SciGraph project
    72 rdf:type schema:Organization
    73 Nbfb9efcd89b64d43ae5677f6280d3a73 rdf:first sg:person.011736502542.16
    74 rdf:rest N4127d84ca048428d8b489a365f5597fe
    75 Ncee2f38bd70f4a84a7ebee0d85322d4f schema:name dimensions_id
    76 schema:value pub.1107923902
    77 rdf:type schema:PropertyValue
    78 Ne31abd4457cc4e28a55848f71e259ce2 schema:name doi
    79 schema:value 10.1007/s00158-018-2125-x
    80 rdf:type schema:PropertyValue
    81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Mathematical Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Numerical and Computational Mathematics
    86 rdf:type schema:DefinedTerm
    87 sg:journal.1050630 schema:issn 1615-147X
    88 1615-1488
    89 schema:name Structural and Multidisciplinary Optimization
    90 rdf:type schema:Periodical
    91 sg:person.011736502542.16 schema:affiliation https://www.grid.ac/institutes/grid.462265.1
    92 schema:familyName Allaire
    93 schema:givenName Grégoire
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011736502542.16
    95 rdf:type schema:Person
    96 sg:person.012370026113.49 schema:affiliation https://www.grid.ac/institutes/grid.462265.1
    97 schema:familyName Bogosel
    98 schema:givenName Beniamin
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012370026113.49
    100 rdf:type schema:Person
    101 sg:pub.10.1007/978-1-4939-2113-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020610268
    102 https://doi.org/10.1007/978-1-4939-2113-3
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/978-3-319-45680-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034788470
    105 https://doi.org/10.1007/978-3-319-45680-5_1
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/978-3-642-87722-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023273798
    108 https://doi.org/10.1007/978-3-642-87722-3
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/978-3-662-05086-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016251678
    111 https://doi.org/10.1007/978-3-662-05086-6
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/b98879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036300795
    114 https://doi.org/10.1007/b98879
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/s00158-016-1453-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1022087922
    117 https://doi.org/10.1007/s00158-016-1453-y
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/s00158-017-1743-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1090325100
    120 https://doi.org/10.1007/s00158-017-1743-z
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/s00158-017-1877-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1100560581
    123 https://doi.org/10.1007/s00158-017-1877-z
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/s00170-008-1675-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013134123
    126 https://doi.org/10.1007/s00170-008-1675-2
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s00170-012-4403-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005548235
    129 https://doi.org/10.1007/s00170-012-4403-x
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s00170-015-8151-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018187988
    132 https://doi.org/10.1007/s00170-015-8151-6
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s10092-011-0051-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1012219733
    135 https://doi.org/10.1007/s10092-011-0051-z
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1023/a:1020874308076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035462968
    138 https://doi.org/10.1023/a:1020874308076
    139 rdf:type schema:CreativeWork
    140 https://app.dimensions.ai/details/publication/pub.1016251678 schema:CreativeWork
    141 https://app.dimensions.ai/details/publication/pub.1020610268 schema:CreativeWork
    142 https://app.dimensions.ai/details/publication/pub.1036300795 schema:CreativeWork
    143 https://doi.org/10.1002/fld.2730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029405561
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.addma.2016.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053631505
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/j.addma.2018.04.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103431724
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/j.apm.2017.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083750516
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/j.cad.2015.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011963922
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/j.cad.2016.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031682007
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/j.cma.2003.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052189268
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/j.cma.2004.12.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036703608
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/j.crma.2017.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085117707
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1016/j.jcp.2003.09.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045900935
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/j.jcp.2017.09.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091974779
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/j.jmatprotec.2013.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052530101
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/j.jmatprotec.2016.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016741712
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/j.jmsy.2014.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041160303
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/j.matdes.2014.06.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050922312
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/j.matdes.2014.07.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000996960
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1051/cocv/2013076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056951977
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1051/m2an/1986200303711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083426900
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1111/cgf.12437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025637260
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1137/1.9781611973365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098553842
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1142/s0218202518500501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105687060
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1145/2601097.2601153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005430041
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1145/2816795.2818121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030259105
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1515/jnum-2012-0013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040044386
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.7712/100016.2067.7766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1097307889
    192 rdf:type schema:CreativeWork
    193 https://www.grid.ac/institutes/grid.462265.1 schema:alternateName Centre de Mathématiques Appliquées
    194 schema:name CMAP, Ecole Polytechnique, CNRS, Université Paris Saclay, 91128, Palaiseau, France
    195 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...