Structural optimization oriented time-dependent reliability methodology under static and dynamic uncertainties View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-04

AUTHORS

Lei Wang, Xiaojun Wang, Di Wu, Menghui Xu, Zhiping Qiu

ABSTRACT

Uncertainty with characteristics of time-dependency, multi-sources and small-samples extensively exists in the whole process of structural design. Associated with frequent occurrences of material aging, load varying, damage accumulating, traditional reliability-based design optimization (RBDO) approaches by combination of the static assumption and the probability theory will be no longer applicable when dealing with the design problems for lifecycle structural models. In view of this, a new non-probabilistic time-dependent RBDO method under the mixture of time-invariant and time-variant uncertainties is investigated in this paper. Enlightened by the first-passage concept, the hybrid reliability index is firstly defined, and its solution implementation relies on the technologies of regulation and the interval mathematics. In order to guarantee the stability and efficiency of the optimization procedure, the improved ant colony algorithm (ACA) is then introduced. Moreover, by comparisons of the models of the safety factor-based design as well as the instantaneous RBDO design, the physical means of the proposed optimization policy are further discussed. Two numerical examples are eventually presented to demonstrate the validity and reasonability of the developed methodology. More... »

PAGES

1533-1551

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00158-017-1824-z

DOI

http://dx.doi.org/10.1007/s00158-017-1824-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092276312


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Civil Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Institute of Solid Mechanics, Beihang University, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Lei", 
        "id": "sg:person.014307123042.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014307123042.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Institute of Solid Mechanics, Beihang University, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xiaojun", 
        "id": "sg:person.015133143544.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015133143544.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Academy of Launch Vehicle Technology", 
          "id": "https://www.grid.ac/institutes/grid.482529.0", 
          "name": [
            "China Academy of Launch Vehicle Technology R&D Center, 100076, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Di", 
        "id": "sg:person.010323611616.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010323611616.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ningbo University", 
          "id": "https://www.grid.ac/institutes/grid.203507.3", 
          "name": [
            "Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo, 315211, Zhejiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Menghui", 
        "id": "sg:person.016315030277.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016315030277.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Institute of Solid Mechanics, Beihang University, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiu", 
        "givenName": "Zhiping", 
        "id": "sg:person.014412456557.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412456557.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/j.1538-7305.1944.tb00874.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005733925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.strusafe.2011.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006188761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-0779(00)00102-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007401751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2016.04.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011854179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ress.2016.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012942228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7949(88)90418-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015831621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7949(88)90418-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015831621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2013.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016995030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-009-0412-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018507742", 
          "https://doi.org/10.1007/s00158-009-0412-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-009-0412-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018507742", 
          "https://doi.org/10.1007/s00158-009-0412-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-009-0412-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018507742", 
          "https://doi.org/10.1007/s00158-009-0412-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-009-0412-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018507742", 
          "https://doi.org/10.1007/s00158-009-0412-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2013.10.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020219649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02331930008844486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021856336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00707-013-0969-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023671531", 
          "https://doi.org/10.1007/s00707-013-0969-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00707-015-1379-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023968942", 
          "https://doi.org/10.1007/s00707-015-1379-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.199-200.456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024845010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00707-010-0440-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024848405", 
          "https://doi.org/10.1007/s00707-010-0440-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mechmachtheory.2011.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025736252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2009.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025866145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-003-0322-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026547056", 
          "https://doi.org/10.1007/s00158-003-0322-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-003-0322-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026547056", 
          "https://doi.org/10.1007/s00158-003-0322-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-4730(99)00043-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028724574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engstruct.2011.02.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028942862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.118-120.10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031274659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jweia.2011.01.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033395887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-012-0839-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034322084", 
          "https://doi.org/10.1007/s00158-012-0839-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-012-0839-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034322084", 
          "https://doi.org/10.1007/s00158-012-0839-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-013-0937-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035894229", 
          "https://doi.org/10.1007/s00158-013-0937-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-013-0937-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035894229", 
          "https://doi.org/10.1007/s00158-013-0937-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0305215x.2015.1100956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037806605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruc.2015.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039273370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7949(94)90405-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039940995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7949(94)90405-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039940995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/513261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042108612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01128824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043102128", 
          "https://doi.org/10.1007/bf01128824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01128824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043102128", 
          "https://doi.org/10.1007/bf01128824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-016-0526-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045242077", 
          "https://doi.org/10.1007/s11431-016-0526-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-016-0526-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045242077", 
          "https://doi.org/10.1007/s11431-016-0526-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/stc.1965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046566894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ress.2016.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046602559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmecsci.2016.11.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046631138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0305215x.2013.841905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047396601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-015-1296-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050660581", 
          "https://doi.org/10.1007/s00158-015-1296-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-015-1296-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050660581", 
          "https://doi.org/10.1007/s00158-015-1296-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15397734.2016.1141365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053125428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10338-008-0804-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054522019", 
          "https://doi.org/10.1007/s10338-008-0804-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10338-008-0804-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054522019", 
          "https://doi.org/10.1007/s10338-008-0804-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9399(2006)132:1(65)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057584649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1992510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062076432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1992510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062076432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1992510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062076432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3167691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062105278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4007931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062148255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219876216410206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063008146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1360/sspma2014-00419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065074653"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04", 
    "datePublishedReg": "2018-04-01", 
    "description": "Uncertainty with characteristics of time-dependency, multi-sources and small-samples extensively exists in the whole process of structural design. Associated with frequent occurrences of material aging, load varying, damage accumulating, traditional reliability-based design optimization (RBDO) approaches by combination of the static assumption and the probability theory will be no longer applicable when dealing with the design problems for lifecycle structural models. In view of this, a new non-probabilistic time-dependent RBDO method under the mixture of time-invariant and time-variant uncertainties is investigated in this paper. Enlightened by the first-passage concept, the hybrid reliability index is firstly defined, and its solution implementation relies on the technologies of regulation and the interval mathematics. In order to guarantee the stability and efficiency of the optimization procedure, the improved ant colony algorithm (ACA) is then introduced. Moreover, by comparisons of the models of the safety factor-based design as well as the instantaneous RBDO design, the physical means of the proposed optimization policy are further discussed. Two numerical examples are eventually presented to demonstrate the validity and reasonability of the developed methodology.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00158-017-1824-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050630", 
        "issn": [
          "1615-147X", 
          "1615-1488"
        ], 
        "name": "Structural and Multidisciplinary Optimization", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "57"
      }
    ], 
    "name": "Structural optimization oriented time-dependent reliability methodology under static and dynamic uncertainties", 
    "pagination": "1533-1551", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7df4347b6c9bf2d1bb9ccf5d7ad5b2fd429818cdd5779f5cff7d5af61fd8366f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00158-017-1824-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092276312"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00158-017-1824-z", 
      "https://app.dimensions.ai/details/publication/pub.1092276312"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000564.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00158-017-1824-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00158-017-1824-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00158-017-1824-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00158-017-1824-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00158-017-1824-z'


 

This table displays all metadata directly associated to this object as RDF triples.

232 TRIPLES      21 PREDICATES      69 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00158-017-1824-z schema:about anzsrc-for:09
2 anzsrc-for:0905
3 schema:author N5405d955b61947dc88826502833f376d
4 schema:citation sg:pub.10.1007/bf01128824
5 sg:pub.10.1007/s00158-003-0322-7
6 sg:pub.10.1007/s00158-009-0412-2
7 sg:pub.10.1007/s00158-012-0839-8
8 sg:pub.10.1007/s00158-013-0937-2
9 sg:pub.10.1007/s00158-015-1296-y
10 sg:pub.10.1007/s00707-010-0440-4
11 sg:pub.10.1007/s00707-013-0969-0
12 sg:pub.10.1007/s00707-015-1379-2
13 sg:pub.10.1007/s10338-008-0804-7
14 sg:pub.10.1007/s11431-016-0526-9
15 https://doi.org/10.1002/j.1538-7305.1944.tb00874.x
16 https://doi.org/10.1002/stc.1965
17 https://doi.org/10.1016/0045-7949(88)90418-x
18 https://doi.org/10.1016/0045-7949(94)90405-7
19 https://doi.org/10.1016/j.apm.2013.10.049
20 https://doi.org/10.1016/j.cma.2009.06.001
21 https://doi.org/10.1016/j.cma.2013.10.016
22 https://doi.org/10.1016/j.compstruc.2015.09.004
23 https://doi.org/10.1016/j.compstruct.2016.04.020
24 https://doi.org/10.1016/j.engstruct.2011.02.040
25 https://doi.org/10.1016/j.ijmecsci.2016.11.020
26 https://doi.org/10.1016/j.jweia.2011.01.017
27 https://doi.org/10.1016/j.mechmachtheory.2011.04.008
28 https://doi.org/10.1016/j.ress.2016.03.009
29 https://doi.org/10.1016/j.ress.2016.10.009
30 https://doi.org/10.1016/j.strusafe.2011.03.002
31 https://doi.org/10.1016/s0167-4730(99)00043-0
32 https://doi.org/10.1016/s0960-0779(00)00102-8
33 https://doi.org/10.1061/(asce)0733-9399(2006)132:1(65)
34 https://doi.org/10.1080/02331930008844486
35 https://doi.org/10.1080/0305215x.2013.841905
36 https://doi.org/10.1080/0305215x.2015.1100956
37 https://doi.org/10.1080/15397734.2016.1141365
38 https://doi.org/10.1115/1.1992510
39 https://doi.org/10.1115/1.3167691
40 https://doi.org/10.1115/1.4007931
41 https://doi.org/10.1142/s0219876216410206
42 https://doi.org/10.1155/2013/513261
43 https://doi.org/10.1360/sspma2014-00419
44 https://doi.org/10.4028/www.scientific.net/amr.118-120.10
45 https://doi.org/10.4028/www.scientific.net/amr.199-200.456
46 schema:datePublished 2018-04
47 schema:datePublishedReg 2018-04-01
48 schema:description Uncertainty with characteristics of time-dependency, multi-sources and small-samples extensively exists in the whole process of structural design. Associated with frequent occurrences of material aging, load varying, damage accumulating, traditional reliability-based design optimization (RBDO) approaches by combination of the static assumption and the probability theory will be no longer applicable when dealing with the design problems for lifecycle structural models. In view of this, a new non-probabilistic time-dependent RBDO method under the mixture of time-invariant and time-variant uncertainties is investigated in this paper. Enlightened by the first-passage concept, the hybrid reliability index is firstly defined, and its solution implementation relies on the technologies of regulation and the interval mathematics. In order to guarantee the stability and efficiency of the optimization procedure, the improved ant colony algorithm (ACA) is then introduced. Moreover, by comparisons of the models of the safety factor-based design as well as the instantaneous RBDO design, the physical means of the proposed optimization policy are further discussed. Two numerical examples are eventually presented to demonstrate the validity and reasonability of the developed methodology.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf N21c91118a68a4195ab292e7d56b74c9b
53 Na038a9bc52f141218e14c9de2bd38410
54 sg:journal.1050630
55 schema:name Structural optimization oriented time-dependent reliability methodology under static and dynamic uncertainties
56 schema:pagination 1533-1551
57 schema:productId N2380eb9a8f8747748c6e4ee2db34fd10
58 N83544052f57c4a3e85fc751f6b18bebd
59 Ndde577d086424eeb9d8c45342680ca67
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092276312
61 https://doi.org/10.1007/s00158-017-1824-z
62 schema:sdDatePublished 2019-04-10T16:50
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N6ef872af139e44c79247490c11fa246e
65 schema:url https://link.springer.com/10.1007%2Fs00158-017-1824-z
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N13891ba632344f14a989666fbd027479 rdf:first sg:person.015133143544.00
70 rdf:rest N587477f9638a43a78fca949942dd7119
71 N21c91118a68a4195ab292e7d56b74c9b schema:volumeNumber 57
72 rdf:type schema:PublicationVolume
73 N2380eb9a8f8747748c6e4ee2db34fd10 schema:name doi
74 schema:value 10.1007/s00158-017-1824-z
75 rdf:type schema:PropertyValue
76 N278ab3787994452db6618d044ae1b71c rdf:first sg:person.014412456557.05
77 rdf:rest rdf:nil
78 N5405d955b61947dc88826502833f376d rdf:first sg:person.014307123042.54
79 rdf:rest N13891ba632344f14a989666fbd027479
80 N587477f9638a43a78fca949942dd7119 rdf:first sg:person.010323611616.22
81 rdf:rest N9a53b216f741431cae0966a71ea285a5
82 N6ef872af139e44c79247490c11fa246e schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N83544052f57c4a3e85fc751f6b18bebd schema:name readcube_id
85 schema:value 7df4347b6c9bf2d1bb9ccf5d7ad5b2fd429818cdd5779f5cff7d5af61fd8366f
86 rdf:type schema:PropertyValue
87 N9a53b216f741431cae0966a71ea285a5 rdf:first sg:person.016315030277.62
88 rdf:rest N278ab3787994452db6618d044ae1b71c
89 Na038a9bc52f141218e14c9de2bd38410 schema:issueNumber 4
90 rdf:type schema:PublicationIssue
91 Ndde577d086424eeb9d8c45342680ca67 schema:name dimensions_id
92 schema:value pub.1092276312
93 rdf:type schema:PropertyValue
94 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
95 schema:name Engineering
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
98 schema:name Civil Engineering
99 rdf:type schema:DefinedTerm
100 sg:journal.1050630 schema:issn 1615-147X
101 1615-1488
102 schema:name Structural and Multidisciplinary Optimization
103 rdf:type schema:Periodical
104 sg:person.010323611616.22 schema:affiliation https://www.grid.ac/institutes/grid.482529.0
105 schema:familyName Wu
106 schema:givenName Di
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010323611616.22
108 rdf:type schema:Person
109 sg:person.014307123042.54 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
110 schema:familyName Wang
111 schema:givenName Lei
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014307123042.54
113 rdf:type schema:Person
114 sg:person.014412456557.05 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
115 schema:familyName Qiu
116 schema:givenName Zhiping
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412456557.05
118 rdf:type schema:Person
119 sg:person.015133143544.00 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
120 schema:familyName Wang
121 schema:givenName Xiaojun
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015133143544.00
123 rdf:type schema:Person
124 sg:person.016315030277.62 schema:affiliation https://www.grid.ac/institutes/grid.203507.3
125 schema:familyName Xu
126 schema:givenName Menghui
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016315030277.62
128 rdf:type schema:Person
129 sg:pub.10.1007/bf01128824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043102128
130 https://doi.org/10.1007/bf01128824
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s00158-003-0322-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026547056
133 https://doi.org/10.1007/s00158-003-0322-7
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s00158-009-0412-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018507742
136 https://doi.org/10.1007/s00158-009-0412-2
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s00158-012-0839-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034322084
139 https://doi.org/10.1007/s00158-012-0839-8
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s00158-013-0937-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035894229
142 https://doi.org/10.1007/s00158-013-0937-2
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s00158-015-1296-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1050660581
145 https://doi.org/10.1007/s00158-015-1296-y
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s00707-010-0440-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024848405
148 https://doi.org/10.1007/s00707-010-0440-4
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s00707-013-0969-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023671531
151 https://doi.org/10.1007/s00707-013-0969-0
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s00707-015-1379-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023968942
154 https://doi.org/10.1007/s00707-015-1379-2
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s10338-008-0804-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054522019
157 https://doi.org/10.1007/s10338-008-0804-7
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s11431-016-0526-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045242077
160 https://doi.org/10.1007/s11431-016-0526-9
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/j.1538-7305.1944.tb00874.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005733925
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/stc.1965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046566894
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/0045-7949(88)90418-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015831621
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/0045-7949(94)90405-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039940995
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.apm.2013.10.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020219649
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.cma.2009.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025866145
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.cma.2013.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016995030
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.compstruc.2015.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039273370
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.compstruct.2016.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011854179
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.engstruct.2011.02.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028942862
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.ijmecsci.2016.11.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046631138
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.jweia.2011.01.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033395887
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.mechmachtheory.2011.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025736252
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.ress.2016.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046602559
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.ress.2016.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012942228
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.strusafe.2011.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006188761
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/s0167-4730(99)00043-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028724574
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/s0960-0779(00)00102-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007401751
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1061/(asce)0733-9399(2006)132:1(65) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057584649
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1080/02331930008844486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021856336
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1080/0305215x.2013.841905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047396601
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1080/0305215x.2015.1100956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037806605
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1080/15397734.2016.1141365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053125428
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1115/1.1992510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062076432
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1115/1.3167691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062105278
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1115/1.4007931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062148255
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1142/s0219876216410206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063008146
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1155/2013/513261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042108612
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1360/sspma2014-00419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065074653
219 rdf:type schema:CreativeWork
220 https://doi.org/10.4028/www.scientific.net/amr.118-120.10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031274659
221 rdf:type schema:CreativeWork
222 https://doi.org/10.4028/www.scientific.net/amr.199-200.456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024845010
223 rdf:type schema:CreativeWork
224 https://www.grid.ac/institutes/grid.203507.3 schema:alternateName Ningbo University
225 schema:name Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo, 315211, Zhejiang, China
226 rdf:type schema:Organization
227 https://www.grid.ac/institutes/grid.482529.0 schema:alternateName China Academy of Launch Vehicle Technology
228 schema:name China Academy of Launch Vehicle Technology R&D Center, 100076, Beijing, China
229 rdf:type schema:Organization
230 https://www.grid.ac/institutes/grid.64939.31 schema:alternateName Beihang University
231 schema:name Institute of Solid Mechanics, Beihang University, 100083, Beijing, China
232 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...