Novel numerical methods for reliability analysis and optimization in engineering fuzzy heat conduction problem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12

AUTHORS

Chong Wang, Zhiping Qiu, Menghui Xu, Yunlong Li

ABSTRACT

Engineering fuzzy heat conduction problem with subjective uncertainties in input parameters constitutes a significant challenge. Based on fuzzy and interval theory, this paper presents novel numerical methods to efficiently identify the effect of fuzzy uncertainty on the system reliability analysis and optimization design. Firstly using the interval ranking strategy, the interval safety possibility in the transition state can be precisely quantified, and the eventual fuzzy safety possibility is calculated by integral operation. Then a fuzzy reliability-based optimization model is established with considerable computational cost caused by the two-layer nested loop. In order to improve the computational efficiency, a subinterval perturbation method based on the first-order Taylor series is presented to replace the inner loop. Comparing numerical results with traditional reliability model, two numerical examples are provided to evidence the superiority of proposed model and method for fuzzy reliability analysis and optimization in practical engineering. More... »

PAGES

1247-1257

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00158-017-1717-1

DOI

http://dx.doi.org/10.1007/s00158-017-1717-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085735704


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Institute of Scientific Computing, Technische Universit\u00e4t Braunschweig, 38106, Braunschweig, Germany", 
            "Institute of Solid Mechanics, Beihang University, 100191, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Chong", 
        "id": "sg:person.012145241544.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012145241544.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Institute of Solid Mechanics, Beihang University, 100191, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiu", 
        "givenName": "Zhiping", 
        "id": "sg:person.014412456557.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412456557.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ningbo University", 
          "id": "https://www.grid.ac/institutes/grid.203507.3", 
          "name": [
            "Faculty of Mechanical Engineering & Mechanics, Ningbo University, 315211, Ningbo, Zhejiang, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Menghui", 
        "id": "sg:person.016315030277.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016315030277.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Institute of Solid Mechanics, Beihang University, 100191, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yunlong", 
        "id": "sg:person.010031613557.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010031613557.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2015.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003998532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-016-1423-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007916630", 
          "https://doi.org/10.1007/s00158-016-1423-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-016-1423-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007916630", 
          "https://doi.org/10.1007/s00158-016-1423-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.4932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008407657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00707-015-1441-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009636322", 
          "https://doi.org/10.1007/s00707-015-1441-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0019-9958(65)90241-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009640697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2008.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010335494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.39696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010992937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.strusafe.2014.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011002062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2016.04.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011699413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.probengmech.2010.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012632972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2009.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025866145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2011.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026065319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207721.2011.581393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026743937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(93)90182-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027087829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(93)90182-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027087829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijar.2013.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032337050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7949(02)00006-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037308643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10409-013-0068-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040796259", 
          "https://doi.org/10.1007/s10409-013-0068-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7825(02)00287-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041345660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-014-1116-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042953846", 
          "https://doi.org/10.1007/s00158-014-1116-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-014-1116-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042953846", 
          "https://doi.org/10.1007/s00158-014-1116-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0026-2714(96)00040-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044404371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-010-0518-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045055905", 
          "https://doi.org/10.1007/s00158-010-0518-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-010-0518-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045055905", 
          "https://doi.org/10.1007/s00158-010-0518-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-010-0518-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045055905", 
          "https://doi.org/10.1007/s00158-010-0518-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijsolstr.2008.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045469978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.9036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046478592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruc.2015.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046773551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-4730(97)00093-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051046856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/91.855914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061247997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1649968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062073598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470172421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470172421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661666"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Engineering fuzzy heat conduction problem with subjective uncertainties in input parameters constitutes a significant challenge. Based on fuzzy and interval theory, this paper presents novel numerical methods to efficiently identify the effect of fuzzy uncertainty on the system reliability analysis and optimization design. Firstly using the interval ranking strategy, the interval safety possibility in the transition state can be precisely quantified, and the eventual fuzzy safety possibility is calculated by integral operation. Then a fuzzy reliability-based optimization model is established with considerable computational cost caused by the two-layer nested loop. In order to improve the computational efficiency, a subinterval perturbation method based on the first-order Taylor series is presented to replace the inner loop. Comparing numerical results with traditional reliability model, two numerical examples are provided to evidence the superiority of proposed model and method for fuzzy reliability analysis and optimization in practical engineering.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00158-017-1717-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050630", 
        "issn": [
          "1615-147X", 
          "1615-1488"
        ], 
        "name": "Structural and Multidisciplinary Optimization", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "name": "Novel numerical methods for reliability analysis and optimization in engineering fuzzy heat conduction problem", 
    "pagination": "1247-1257", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ab39f53ad7deb6b7c980927ea0f323c93cafebf3debf6a389e5ac95ac414d187"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00158-017-1717-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085735704"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00158-017-1717-1", 
      "https://app.dimensions.ai/details/publication/pub.1085735704"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113679_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00158-017-1717-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00158-017-1717-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00158-017-1717-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00158-017-1717-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00158-017-1717-1'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00158-017-1717-1 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N4ca436792b20427b9372a59d05f63aa1
4 schema:citation sg:pub.10.1007/s00158-010-0518-6
5 sg:pub.10.1007/s00158-014-1116-9
6 sg:pub.10.1007/s00158-016-1423-4
7 sg:pub.10.1007/s00707-015-1441-0
8 sg:pub.10.1007/s10409-013-0068-4
9 https://doi.org/10.1002/9780470172421
10 https://doi.org/10.1002/nme.4932
11 https://doi.org/10.1016/0165-0114(93)90182-h
12 https://doi.org/10.1016/j.cma.2008.05.004
13 https://doi.org/10.1016/j.cma.2009.06.001
14 https://doi.org/10.1016/j.cma.2011.04.007
15 https://doi.org/10.1016/j.compstruc.2015.08.009
16 https://doi.org/10.1016/j.ijar.2013.01.009
17 https://doi.org/10.1016/j.ijsolstr.2008.01.005
18 https://doi.org/10.1016/j.ijthermalsci.2015.07.005
19 https://doi.org/10.1016/j.ijthermalsci.2016.04.012
20 https://doi.org/10.1016/j.probengmech.2010.07.007
21 https://doi.org/10.1016/j.strusafe.2014.09.008
22 https://doi.org/10.1016/s0019-9958(65)90241-x
23 https://doi.org/10.1016/s0026-2714(96)00040-6
24 https://doi.org/10.1016/s0045-7825(02)00287-6
25 https://doi.org/10.1016/s0045-7949(02)00006-8
26 https://doi.org/10.1016/s0167-4730(97)00093-3
27 https://doi.org/10.1080/00207721.2011.581393
28 https://doi.org/10.1109/91.855914
29 https://doi.org/10.1115/1.1649968
30 https://doi.org/10.2514/1.39696
31 https://doi.org/10.2514/1.9036
32 schema:datePublished 2017-12
33 schema:datePublishedReg 2017-12-01
34 schema:description Engineering fuzzy heat conduction problem with subjective uncertainties in input parameters constitutes a significant challenge. Based on fuzzy and interval theory, this paper presents novel numerical methods to efficiently identify the effect of fuzzy uncertainty on the system reliability analysis and optimization design. Firstly using the interval ranking strategy, the interval safety possibility in the transition state can be precisely quantified, and the eventual fuzzy safety possibility is calculated by integral operation. Then a fuzzy reliability-based optimization model is established with considerable computational cost caused by the two-layer nested loop. In order to improve the computational efficiency, a subinterval perturbation method based on the first-order Taylor series is presented to replace the inner loop. Comparing numerical results with traditional reliability model, two numerical examples are provided to evidence the superiority of proposed model and method for fuzzy reliability analysis and optimization in practical engineering.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N48ea31ea231443a7b4e574ab51ada7ab
39 Nd049ce8cf3b34f54a61d289177ce25b8
40 sg:journal.1050630
41 schema:name Novel numerical methods for reliability analysis and optimization in engineering fuzzy heat conduction problem
42 schema:pagination 1247-1257
43 schema:productId N8294ec463f7b4e5dacf589d91b6dfebf
44 Na2cce641dbdc460c83bfe328b4ac7504
45 Nbb5cf751c3b54a6397b7164cf9a045e3
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085735704
47 https://doi.org/10.1007/s00158-017-1717-1
48 schema:sdDatePublished 2019-04-11T10:39
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N464b83652c384ba6870e419d4005bb49
51 schema:url https://link.springer.com/10.1007%2Fs00158-017-1717-1
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N464b83652c384ba6870e419d4005bb49 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N48ea31ea231443a7b4e574ab51ada7ab schema:issueNumber 6
58 rdf:type schema:PublicationIssue
59 N4ca436792b20427b9372a59d05f63aa1 rdf:first sg:person.012145241544.37
60 rdf:rest N921159823f5d467d8b10ed4d44400112
61 N5672cf95275641478ce8a757ecbd86df rdf:first sg:person.016315030277.62
62 rdf:rest N901eb92159c24889b3c25bcd15ec900c
63 N8294ec463f7b4e5dacf589d91b6dfebf schema:name readcube_id
64 schema:value ab39f53ad7deb6b7c980927ea0f323c93cafebf3debf6a389e5ac95ac414d187
65 rdf:type schema:PropertyValue
66 N901eb92159c24889b3c25bcd15ec900c rdf:first sg:person.010031613557.02
67 rdf:rest rdf:nil
68 N921159823f5d467d8b10ed4d44400112 rdf:first sg:person.014412456557.05
69 rdf:rest N5672cf95275641478ce8a757ecbd86df
70 Na2cce641dbdc460c83bfe328b4ac7504 schema:name doi
71 schema:value 10.1007/s00158-017-1717-1
72 rdf:type schema:PropertyValue
73 Nbb5cf751c3b54a6397b7164cf9a045e3 schema:name dimensions_id
74 schema:value pub.1085735704
75 rdf:type schema:PropertyValue
76 Nd049ce8cf3b34f54a61d289177ce25b8 schema:volumeNumber 56
77 rdf:type schema:PublicationVolume
78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
79 schema:name Mathematical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
82 schema:name Numerical and Computational Mathematics
83 rdf:type schema:DefinedTerm
84 sg:journal.1050630 schema:issn 1615-147X
85 1615-1488
86 schema:name Structural and Multidisciplinary Optimization
87 rdf:type schema:Periodical
88 sg:person.010031613557.02 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
89 schema:familyName Li
90 schema:givenName Yunlong
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010031613557.02
92 rdf:type schema:Person
93 sg:person.012145241544.37 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
94 schema:familyName Wang
95 schema:givenName Chong
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012145241544.37
97 rdf:type schema:Person
98 sg:person.014412456557.05 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
99 schema:familyName Qiu
100 schema:givenName Zhiping
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412456557.05
102 rdf:type schema:Person
103 sg:person.016315030277.62 schema:affiliation https://www.grid.ac/institutes/grid.203507.3
104 schema:familyName Xu
105 schema:givenName Menghui
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016315030277.62
107 rdf:type schema:Person
108 sg:pub.10.1007/s00158-010-0518-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045055905
109 https://doi.org/10.1007/s00158-010-0518-6
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s00158-014-1116-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042953846
112 https://doi.org/10.1007/s00158-014-1116-9
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s00158-016-1423-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007916630
115 https://doi.org/10.1007/s00158-016-1423-4
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s00707-015-1441-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009636322
118 https://doi.org/10.1007/s00707-015-1441-0
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s10409-013-0068-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040796259
121 https://doi.org/10.1007/s10409-013-0068-4
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1002/9780470172421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661666
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1002/nme.4932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008407657
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0165-0114(93)90182-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1027087829
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.cma.2008.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010335494
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.cma.2009.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025866145
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.cma.2011.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026065319
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.compstruc.2015.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046773551
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.ijar.2013.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032337050
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.ijsolstr.2008.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045469978
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.ijthermalsci.2015.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003998532
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.ijthermalsci.2016.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011699413
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.probengmech.2010.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012632972
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.strusafe.2014.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011002062
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/s0019-9958(65)90241-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009640697
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/s0026-2714(96)00040-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044404371
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s0045-7825(02)00287-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041345660
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/s0045-7949(02)00006-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037308643
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/s0167-4730(97)00093-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051046856
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1080/00207721.2011.581393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026743937
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/91.855914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061247997
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1115/1.1649968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062073598
164 rdf:type schema:CreativeWork
165 https://doi.org/10.2514/1.39696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010992937
166 rdf:type schema:CreativeWork
167 https://doi.org/10.2514/1.9036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046478592
168 rdf:type schema:CreativeWork
169 https://www.grid.ac/institutes/grid.203507.3 schema:alternateName Ningbo University
170 schema:name Faculty of Mechanical Engineering & Mechanics, Ningbo University, 315211, Ningbo, Zhejiang, People’s Republic of China
171 rdf:type schema:Organization
172 https://www.grid.ac/institutes/grid.64939.31 schema:alternateName Beihang University
173 schema:name Institute of Scientific Computing, Technische Universität Braunschweig, 38106, Braunschweig, Germany
174 Institute of Solid Mechanics, Beihang University, 100191, Beijing, People’s Republic of China
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...