Thickness control in structural optimization via a level set method View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-06

AUTHORS

G. Allaire, F. Jouve, G. Michailidis

ABSTRACT

In the context of structural optimization via a level-set method we propose a framework to handle geometric constraints related to a notion of local thickness. The local thickness is calculated using the signed distance function to the shape. We formulate global constraints using integral functionals and compute their shape derivatives. We discuss different strategies and possible approximations to handle the geometric constraints. We implement our approach in two and three space dimensions for a model of linearized elasticity. As can be expected, the resulting optimized shapes are strongly dependent on the initial guesses and on the specific treatment of the constraints since, in particular, some topological changes may be prevented by those constraints. More... »

PAGES

1349-1382

References to SciGraph publications

  • 2004-05. Structural shape and topology optimization in a level-set-based framework of region representation in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 1998-08. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima in STRUCTURAL OPTIMIZATION
  • 2003. Level Set Methods and Dynamic Implicit Surfaces in NONE
  • 2006. A Feature-Based Structural Topology Optimization Method in IUTAM SYMPOSIUM ON TOPOLOGICAL DESIGN OPTIMIZATION OF STRUCTURES, MACHINES AND MATERIALS
  • 2000. Geometric evolution problems, distance function and viscosity solutions in CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
  • 2002. Shape Optimization by the Homogenization Method in NONE
  • 1984. Optimal Shape Design for Elliptic Systems in NONE
  • 2011-10. Eliminating beta-continuation from Heaviside projection and density filter algorithms in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2009-04. Manufacturing tolerant topology optimization in ACTA MECHANICA SINICA
  • 2007-04. Morphology-based black and white filters for topology optimization in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2011-07. A new level-set based approach to shape and topology optimization under geometric uncertainty in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2009-02. Imposing maximum length scale in topology optimization in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00158-016-1453-y

    DOI

    http://dx.doi.org/10.1007/s00158-016-1453-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022087922


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "\u00c9cole Polytechnique", 
              "id": "https://www.grid.ac/institutes/grid.10877.39", 
              "name": [
                "CMAP (UMR CNRS 7641), Ecole Polytechnique, 91128, Palaiseau, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Allaire", 
            "givenName": "G.", 
            "id": "sg:person.011736502542.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011736502542.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Paris Diderot University", 
              "id": "https://www.grid.ac/institutes/grid.7452.4", 
              "name": [
                "Laboratoire J.L. Lions (UMR CNRS 7598), University Paris Diderot, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jouve", 
            "givenName": "F.", 
            "id": "sg:person.013621275576.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013621275576.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "\u00c9cole Polytechnique", 
              "id": "https://www.grid.ac/institutes/grid.10877.39", 
              "name": [
                "CMAP (UMR CNRS 7641), Ecole Polytechnique, 91128, Palaiseau, France", 
                "Renault DREAM-DELT\u2019A, Guyancourt, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Michailidis", 
            "givenName": "G.", 
            "id": "sg:person.013620416376.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013620416376.77"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.jcp.2004.10.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004342506"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0010-4485(93)90040-u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005006675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0010-4485(93)90040-u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005006675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10409-009-0240-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005036108", 
              "https://doi.org/10.1007/s10409-009-0240-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10409-009-0240-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005036108", 
              "https://doi.org/10.1007/s10409-009-0240-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10409-009-0240-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005036108", 
              "https://doi.org/10.1007/s10409-009-0240-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/nme.1620240207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005125262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/nme.1620240207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005125262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/321479.321486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008450193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-57186-2_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009630627", 
              "https://doi.org/10.1007/978-3-642-57186-2_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cad.2008.07.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015506533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-008-0250-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018517158", 
              "https://doi.org/10.1007/s00158-008-0250-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-008-0250-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018517158", 
              "https://doi.org/10.1007/s00158-008-0250-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-008-0250-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018517158", 
              "https://doi.org/10.1007/s00158-008-0250-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/1-4020-4752-5_48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018899742", 
              "https://doi.org/10.1007/1-4020-4752-5_48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-87722-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023273798", 
              "https://doi.org/10.1007/978-3-642-87722-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-87722-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023273798", 
              "https://doi.org/10.1007/978-3-642-87722-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-9991(88)90002-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024042944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cma.2009.09.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027975153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1097-0207(19980430)41:8<1417::aid-nme344>3.0.co;2-n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028423873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/nme.694", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030490794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0025-5718-04-01678-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030687531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cma.2008.08.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032072043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-003-0363-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033037374", 
              "https://doi.org/10.1007/s00158-003-0363-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-003-0363-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033037374", 
              "https://doi.org/10.1007/s00158-003-0363-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-011-0676-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034933770", 
              "https://doi.org/10.1007/s00158-011-0676-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-011-0676-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034933770", 
              "https://doi.org/10.1007/s00158-011-0676-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-9286-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035318578", 
              "https://doi.org/10.1007/978-1-4684-9286-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-9286-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035318578", 
              "https://doi.org/10.1007/978-1-4684-9286-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1036300795", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/b98879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036300795", 
              "https://doi.org/10.1007/b98879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/b98879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036300795", 
              "https://doi.org/10.1007/b98879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/cviu.1995.1062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039527380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-006-0087-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040985639", 
              "https://doi.org/10.1007/s00158-006-0087-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-006-0087-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040985639", 
              "https://doi.org/10.1007/s00158-006-0087-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-006-0087-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040985639", 
              "https://doi.org/10.1007/s00158-006-0087-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jcph.2000.6581", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041038079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-011-0660-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041778798", 
              "https://doi.org/10.1007/s00158-011-0660-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-011-0660-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041778798", 
              "https://doi.org/10.1007/s00158-011-0660-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cma.2014.08.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042676566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cma.2014.01.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045438780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/nme.1064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045793070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcp.2003.09.032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045900935"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cma.2014.09.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046898888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jcph.2001.6789", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051458430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01214002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053699314", 
              "https://doi.org/10.1007/bf01214002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01214002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053699314", 
              "https://doi.org/10.1007/bf01214002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1631-073x(02)02412-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053738277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/cocv/2013076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056951977"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/08905459708945415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058345587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/050624108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062846002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0036139902403901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062874804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0036144598347059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062877998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0363012997323230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062881370"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-06", 
        "datePublishedReg": "2016-06-01", 
        "description": "In the context of structural optimization via a level-set method we propose a framework to handle geometric constraints related to a notion of local thickness. The local thickness is calculated using the signed distance function to the shape. We formulate global constraints using integral functionals and compute their shape derivatives. We discuss different strategies and possible approximations to handle the geometric constraints. We implement our approach in two and three space dimensions for a model of linearized elasticity. As can be expected, the resulting optimized shapes are strongly dependent on the initial guesses and on the specific treatment of the constraints since, in particular, some topological changes may be prevented by those constraints.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00158-016-1453-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1050630", 
            "issn": [
              "1615-147X", 
              "1615-1488"
            ], 
            "name": "Structural and Multidisciplinary Optimization", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "53"
          }
        ], 
        "name": "Thickness control in structural optimization via a level set method", 
        "pagination": "1349-1382", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "693b65d57f4734b6f939cc2647248dc165cea40c7346b2c1dfe730d0db571461"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00158-016-1453-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022087922"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00158-016-1453-y", 
          "https://app.dimensions.ai/details/publication/pub.1022087922"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89807_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00158-016-1453-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00158-016-1453-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00158-016-1453-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00158-016-1453-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00158-016-1453-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    207 TRIPLES      21 PREDICATES      66 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00158-016-1453-y schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Ncece38eddd494c168c6dcd862cbf6846
    4 schema:citation sg:pub.10.1007/1-4020-4752-5_48
    5 sg:pub.10.1007/978-1-4684-9286-6
    6 sg:pub.10.1007/978-3-642-57186-2_2
    7 sg:pub.10.1007/978-3-642-87722-3
    8 sg:pub.10.1007/b98879
    9 sg:pub.10.1007/bf01214002
    10 sg:pub.10.1007/s00158-003-0363-y
    11 sg:pub.10.1007/s00158-006-0087-x
    12 sg:pub.10.1007/s00158-008-0250-7
    13 sg:pub.10.1007/s00158-011-0660-9
    14 sg:pub.10.1007/s00158-011-0676-1
    15 sg:pub.10.1007/s10409-009-0240-z
    16 https://app.dimensions.ai/details/publication/pub.1036300795
    17 https://doi.org/10.1002/(sici)1097-0207(19980430)41:8<1417::aid-nme344>3.0.co;2-n
    18 https://doi.org/10.1002/nme.1064
    19 https://doi.org/10.1002/nme.1620240207
    20 https://doi.org/10.1002/nme.694
    21 https://doi.org/10.1006/cviu.1995.1062
    22 https://doi.org/10.1006/jcph.2000.6581
    23 https://doi.org/10.1006/jcph.2001.6789
    24 https://doi.org/10.1016/0010-4485(93)90040-u
    25 https://doi.org/10.1016/0021-9991(88)90002-2
    26 https://doi.org/10.1016/j.cad.2008.07.004
    27 https://doi.org/10.1016/j.cma.2008.08.003
    28 https://doi.org/10.1016/j.cma.2009.09.023
    29 https://doi.org/10.1016/j.cma.2014.01.010
    30 https://doi.org/10.1016/j.cma.2014.08.027
    31 https://doi.org/10.1016/j.cma.2014.09.006
    32 https://doi.org/10.1016/j.jcp.2003.09.032
    33 https://doi.org/10.1016/j.jcp.2004.10.005
    34 https://doi.org/10.1016/s1631-073x(02)02412-3
    35 https://doi.org/10.1051/cocv/2013076
    36 https://doi.org/10.1080/08905459708945415
    37 https://doi.org/10.1090/s0025-5718-04-01678-3
    38 https://doi.org/10.1137/050624108
    39 https://doi.org/10.1137/s0036139902403901
    40 https://doi.org/10.1137/s0036144598347059
    41 https://doi.org/10.1137/s0363012997323230
    42 https://doi.org/10.1145/321479.321486
    43 schema:datePublished 2016-06
    44 schema:datePublishedReg 2016-06-01
    45 schema:description In the context of structural optimization via a level-set method we propose a framework to handle geometric constraints related to a notion of local thickness. The local thickness is calculated using the signed distance function to the shape. We formulate global constraints using integral functionals and compute their shape derivatives. We discuss different strategies and possible approximations to handle the geometric constraints. We implement our approach in two and three space dimensions for a model of linearized elasticity. As can be expected, the resulting optimized shapes are strongly dependent on the initial guesses and on the specific treatment of the constraints since, in particular, some topological changes may be prevented by those constraints.
    46 schema:genre research_article
    47 schema:inLanguage en
    48 schema:isAccessibleForFree true
    49 schema:isPartOf N01745a72773c47518376483c0871a8e4
    50 Nc46e03939da743d3bb444a96f2cdd6c9
    51 sg:journal.1050630
    52 schema:name Thickness control in structural optimization via a level set method
    53 schema:pagination 1349-1382
    54 schema:productId N251482bda98f406fa88e130c23abfc8f
    55 N961002a9ca024d79b5a0c6a25b94122b
    56 N98fefbb7aaed480a95811399159a150a
    57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022087922
    58 https://doi.org/10.1007/s00158-016-1453-y
    59 schema:sdDatePublished 2019-04-11T09:57
    60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    61 schema:sdPublisher Nce5ff617e454476dba60e13eeab58024
    62 schema:url https://link.springer.com/10.1007%2Fs00158-016-1453-y
    63 sgo:license sg:explorer/license/
    64 sgo:sdDataset articles
    65 rdf:type schema:ScholarlyArticle
    66 N01745a72773c47518376483c0871a8e4 schema:issueNumber 6
    67 rdf:type schema:PublicationIssue
    68 N251482bda98f406fa88e130c23abfc8f schema:name dimensions_id
    69 schema:value pub.1022087922
    70 rdf:type schema:PropertyValue
    71 N687d97ccfef7474fbe8cdb7b481dbb97 rdf:first sg:person.013621275576.56
    72 rdf:rest Nf3687802506c4d238993aef4020614aa
    73 N961002a9ca024d79b5a0c6a25b94122b schema:name readcube_id
    74 schema:value 693b65d57f4734b6f939cc2647248dc165cea40c7346b2c1dfe730d0db571461
    75 rdf:type schema:PropertyValue
    76 N98fefbb7aaed480a95811399159a150a schema:name doi
    77 schema:value 10.1007/s00158-016-1453-y
    78 rdf:type schema:PropertyValue
    79 Nc46e03939da743d3bb444a96f2cdd6c9 schema:volumeNumber 53
    80 rdf:type schema:PublicationVolume
    81 Nce5ff617e454476dba60e13eeab58024 schema:name Springer Nature - SN SciGraph project
    82 rdf:type schema:Organization
    83 Ncece38eddd494c168c6dcd862cbf6846 rdf:first sg:person.011736502542.16
    84 rdf:rest N687d97ccfef7474fbe8cdb7b481dbb97
    85 Nf3687802506c4d238993aef4020614aa rdf:first sg:person.013620416376.77
    86 rdf:rest rdf:nil
    87 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Mathematical Sciences
    89 rdf:type schema:DefinedTerm
    90 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Pure Mathematics
    92 rdf:type schema:DefinedTerm
    93 sg:journal.1050630 schema:issn 1615-147X
    94 1615-1488
    95 schema:name Structural and Multidisciplinary Optimization
    96 rdf:type schema:Periodical
    97 sg:person.011736502542.16 schema:affiliation https://www.grid.ac/institutes/grid.10877.39
    98 schema:familyName Allaire
    99 schema:givenName G.
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011736502542.16
    101 rdf:type schema:Person
    102 sg:person.013620416376.77 schema:affiliation https://www.grid.ac/institutes/grid.10877.39
    103 schema:familyName Michailidis
    104 schema:givenName G.
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013620416376.77
    106 rdf:type schema:Person
    107 sg:person.013621275576.56 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
    108 schema:familyName Jouve
    109 schema:givenName F.
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013621275576.56
    111 rdf:type schema:Person
    112 sg:pub.10.1007/1-4020-4752-5_48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018899742
    113 https://doi.org/10.1007/1-4020-4752-5_48
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/978-1-4684-9286-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035318578
    116 https://doi.org/10.1007/978-1-4684-9286-6
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/978-3-642-57186-2_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009630627
    119 https://doi.org/10.1007/978-3-642-57186-2_2
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/978-3-642-87722-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023273798
    122 https://doi.org/10.1007/978-3-642-87722-3
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/b98879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036300795
    125 https://doi.org/10.1007/b98879
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/bf01214002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053699314
    128 https://doi.org/10.1007/bf01214002
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/s00158-003-0363-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1033037374
    131 https://doi.org/10.1007/s00158-003-0363-y
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/s00158-006-0087-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040985639
    134 https://doi.org/10.1007/s00158-006-0087-x
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/s00158-008-0250-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018517158
    137 https://doi.org/10.1007/s00158-008-0250-7
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/s00158-011-0660-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041778798
    140 https://doi.org/10.1007/s00158-011-0660-9
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/s00158-011-0676-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034933770
    143 https://doi.org/10.1007/s00158-011-0676-1
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/s10409-009-0240-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1005036108
    146 https://doi.org/10.1007/s10409-009-0240-z
    147 rdf:type schema:CreativeWork
    148 https://app.dimensions.ai/details/publication/pub.1036300795 schema:CreativeWork
    149 https://doi.org/10.1002/(sici)1097-0207(19980430)41:8<1417::aid-nme344>3.0.co;2-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1028423873
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1002/nme.1064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045793070
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1002/nme.1620240207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005125262
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1002/nme.694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030490794
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1006/cviu.1995.1062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039527380
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1006/jcph.2000.6581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041038079
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1006/jcph.2001.6789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051458430
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/0010-4485(93)90040-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1005006675
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/0021-9991(88)90002-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024042944
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/j.cad.2008.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015506533
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/j.cma.2008.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032072043
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/j.cma.2009.09.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027975153
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/j.cma.2014.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045438780
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/j.cma.2014.08.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042676566
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/j.cma.2014.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046898888
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/j.jcp.2003.09.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045900935
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/j.jcp.2004.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004342506
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1016/s1631-073x(02)02412-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053738277
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1051/cocv/2013076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056951977
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1080/08905459708945415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058345587
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1090/s0025-5718-04-01678-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030687531
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1137/050624108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062846002
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1137/s0036139902403901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062874804
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1137/s0036144598347059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877998
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1137/s0363012997323230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062881370
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1145/321479.321486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008450193
    200 rdf:type schema:CreativeWork
    201 https://www.grid.ac/institutes/grid.10877.39 schema:alternateName École Polytechnique
    202 schema:name CMAP (UMR CNRS 7641), Ecole Polytechnique, 91128, Palaiseau, France
    203 Renault DREAM-DELT’A, Guyancourt, France
    204 rdf:type schema:Organization
    205 https://www.grid.ac/institutes/grid.7452.4 schema:alternateName Paris Diderot University
    206 schema:name Laboratoire J.L. Lions (UMR CNRS 7598), University Paris Diderot, Paris, France
    207 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...