Mobile robot path planning algorithm by equivalent conduction heat flow topology optimization View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-05

AUTHORS

Jae Chun Ryu, Frank Chongwoo Park, Yoon Young Kim

ABSTRACT

This paper addresses the path planning problem for a point robot moving in a planar environment filled with obstacles. Our approach is based on the principles of thermal conduction and structural topology optimization and rests on the observation that, by identifying the starting and ending configurations of a point robot as the heat source and sink of a conducting plate, respectively, the path planning problem can be formulated as a topology optimization problem that minimizes thermal compliance. Obstacles are modeled as regions of zero thermal conductivity; in fact, regions can be assigned varying levels of non-uniform conductivity depending on the application. We describe the details of our path planning algorithm, including the use of artificial mass constraints (particularly limits on the plate mass) to ensure convergence, and the choice of penalty exponents. The feasibility and practicality of our approach is validated through numerical experiments performed with several benchmarks, with intriguing possibilities for extension to more complex environments and real terrains. The benchmark problems of this paper mainly consist of obstacle-free path planning problems in two-dimensional space with maze-typed, symmetric, and spiral-type obstacles. We also address planning problems involving user-specified checkpoints, and also finding shortest paths on real three-dimensional terrain. To the authors’ knowledge, the path planning going through a stopover is considered for the first time. More... »

PAGES

703-715

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00158-011-0728-6

DOI

http://dx.doi.org/10.1007/s00158-011-0728-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043141024


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Mechanical and Aerospace Engineering, Seoul National University, 599 Gwanangno, Gwanak-Gu, 151-742, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ryu", 
        "givenName": "Jae Chun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Mechanical and Aerospace Engineering, Seoul National University, 599 Gwanangno, Gwanak-Gu, 151-742, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Frank Chongwoo", 
        "id": "sg:person.01062014757.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062014757.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Mechanical and Aerospace Engineering, Seoul National University, 599 Gwanangno, Gwanak-Gu, 151-742, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Yoon Young", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0045-7825(88)90086-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008680660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7825(88)90086-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008680660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-006-0085-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012346441", 
          "https://doi.org/10.1007/s00158-006-0085-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-006-0085-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012346441", 
          "https://doi.org/10.1007/s00158-006-0085-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-006-0085-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012346441", 
          "https://doi.org/10.1007/s00158-006-0085-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-68405-3_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017096150", 
          "https://doi.org/10.1007/978-3-540-68405-3_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/027836498600500106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025658127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/027836498600500106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025658127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026062423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-47789-6_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028578448", 
          "https://doi.org/10.1007/3-540-47789-6_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-47789-6_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028578448", 
          "https://doi.org/10.1007/3-540-47789-6_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7949(94)90279-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030181208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7949(94)90279-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030181208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-005-0584-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030355112", 
          "https://doi.org/10.1007/s00158-005-0584-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-005-0584-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030355112", 
          "https://doi.org/10.1007/s00158-005-0584-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-005-0584-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030355112", 
          "https://doi.org/10.1007/s00158-005-0584-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-4247(01)00853-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032937147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008102230551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033229969", 
          "https://doi.org/10.1023/a:1008102230551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0196-8858(90)90017-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036805253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.1422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049049755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.1422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049049755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/70.143352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061215921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jra.1987.1087095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061308659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.1992.587412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086358265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.2000.844727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093903858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.1994.351266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094746810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.1994.351000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095227364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.1996.506576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095600935"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-05", 
    "datePublishedReg": "2012-05-01", 
    "description": "This paper addresses the path planning problem for a point robot moving in a planar environment filled with obstacles. Our approach is based on the principles of thermal conduction and structural topology optimization and rests on the observation that, by identifying the starting and ending configurations of a point robot as the heat source and sink of a conducting plate, respectively, the path planning problem can be formulated as a topology optimization problem that minimizes thermal compliance. Obstacles are modeled as regions of zero thermal conductivity; in fact, regions can be assigned varying levels of non-uniform conductivity depending on the application. We describe the details of our path planning algorithm, including the use of artificial mass constraints (particularly limits on the plate mass) to ensure convergence, and the choice of penalty exponents. The feasibility and practicality of our approach is validated through numerical experiments performed with several benchmarks, with intriguing possibilities for extension to more complex environments and real terrains. The benchmark problems of this paper mainly consist of obstacle-free path planning problems in two-dimensional space with maze-typed, symmetric, and spiral-type obstacles. We also address planning problems involving user-specified checkpoints, and also finding shortest paths on real three-dimensional terrain. To the authors\u2019 knowledge, the path planning going through a stopover is considered for the first time.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00158-011-0728-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050630", 
        "issn": [
          "1615-147X", 
          "1615-1488"
        ], 
        "name": "Structural and Multidisciplinary Optimization", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "name": "Mobile robot path planning algorithm by equivalent conduction heat flow topology optimization", 
    "pagination": "703-715", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cd7ec2f0f26bc64375aa6461fd48ecd5e94042ae7f6e983be506821a503e3ea7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00158-011-0728-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043141024"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00158-011-0728-6", 
      "https://app.dimensions.ai/details/publication/pub.1043141024"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113641_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00158-011-0728-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00158-011-0728-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00158-011-0728-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00158-011-0728-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00158-011-0728-6'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00158-011-0728-6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N7ecf6aa023e542f5b0433a4cad757916
4 schema:citation sg:pub.10.1007/3-540-47789-6_1
5 sg:pub.10.1007/978-3-540-68405-3_18
6 sg:pub.10.1007/s00158-005-0584-3
7 sg:pub.10.1007/s00158-006-0085-z
8 sg:pub.10.1023/a:1008102230551
9 https://doi.org/10.1002/nme.1422
10 https://doi.org/10.1016/0045-7825(88)90086-2
11 https://doi.org/10.1016/0045-7949(94)90279-8
12 https://doi.org/10.1016/0196-8858(90)90017-s
13 https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.039
14 https://doi.org/10.1016/s0924-4247(01)00853-6
15 https://doi.org/10.1109/70.143352
16 https://doi.org/10.1109/iros.1992.587412
17 https://doi.org/10.1109/jra.1987.1087095
18 https://doi.org/10.1109/robot.1994.351000
19 https://doi.org/10.1109/robot.1994.351266
20 https://doi.org/10.1109/robot.1996.506576
21 https://doi.org/10.1109/robot.2000.844727
22 https://doi.org/10.1177/027836498600500106
23 schema:datePublished 2012-05
24 schema:datePublishedReg 2012-05-01
25 schema:description This paper addresses the path planning problem for a point robot moving in a planar environment filled with obstacles. Our approach is based on the principles of thermal conduction and structural topology optimization and rests on the observation that, by identifying the starting and ending configurations of a point robot as the heat source and sink of a conducting plate, respectively, the path planning problem can be formulated as a topology optimization problem that minimizes thermal compliance. Obstacles are modeled as regions of zero thermal conductivity; in fact, regions can be assigned varying levels of non-uniform conductivity depending on the application. We describe the details of our path planning algorithm, including the use of artificial mass constraints (particularly limits on the plate mass) to ensure convergence, and the choice of penalty exponents. The feasibility and practicality of our approach is validated through numerical experiments performed with several benchmarks, with intriguing possibilities for extension to more complex environments and real terrains. The benchmark problems of this paper mainly consist of obstacle-free path planning problems in two-dimensional space with maze-typed, symmetric, and spiral-type obstacles. We also address planning problems involving user-specified checkpoints, and also finding shortest paths on real three-dimensional terrain. To the authors’ knowledge, the path planning going through a stopover is considered for the first time.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N67088d3773644a7cba4d154a22227188
30 Nde2fb33a586f460a9064eb603ccde463
31 sg:journal.1050630
32 schema:name Mobile robot path planning algorithm by equivalent conduction heat flow topology optimization
33 schema:pagination 703-715
34 schema:productId N17f711e6ce9141139ba7d381ba987fd8
35 Ne72e0438a07d47f493f37c07a1069b52
36 Nf308ea5e14d24f21a662417007962cac
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043141024
38 https://doi.org/10.1007/s00158-011-0728-6
39 schema:sdDatePublished 2019-04-11T10:28
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Neeaad5c7dc4e45049718832311ceb23e
42 schema:url https://link.springer.com/10.1007%2Fs00158-011-0728-6
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N17f711e6ce9141139ba7d381ba987fd8 schema:name dimensions_id
47 schema:value pub.1043141024
48 rdf:type schema:PropertyValue
49 N623ae6c609d0460e81733017ca1bbca9 rdf:first sg:person.01062014757.30
50 rdf:rest Na020bd4409574a5bb96a97ae6507bf56
51 N67088d3773644a7cba4d154a22227188 schema:volumeNumber 45
52 rdf:type schema:PublicationVolume
53 N7ecf6aa023e542f5b0433a4cad757916 rdf:first Nfe9d3b2763bd4015bf1fc1ed909def79
54 rdf:rest N623ae6c609d0460e81733017ca1bbca9
55 Na020bd4409574a5bb96a97ae6507bf56 rdf:first Ndaa5d88d810040d5913ab00fd58b3b76
56 rdf:rest rdf:nil
57 Ndaa5d88d810040d5913ab00fd58b3b76 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
58 schema:familyName Kim
59 schema:givenName Yoon Young
60 rdf:type schema:Person
61 Nde2fb33a586f460a9064eb603ccde463 schema:issueNumber 5
62 rdf:type schema:PublicationIssue
63 Ne72e0438a07d47f493f37c07a1069b52 schema:name doi
64 schema:value 10.1007/s00158-011-0728-6
65 rdf:type schema:PropertyValue
66 Neeaad5c7dc4e45049718832311ceb23e schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Nf308ea5e14d24f21a662417007962cac schema:name readcube_id
69 schema:value cd7ec2f0f26bc64375aa6461fd48ecd5e94042ae7f6e983be506821a503e3ea7
70 rdf:type schema:PropertyValue
71 Nfe9d3b2763bd4015bf1fc1ed909def79 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
72 schema:familyName Ryu
73 schema:givenName Jae Chun
74 rdf:type schema:Person
75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
76 schema:name Information and Computing Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
79 schema:name Artificial Intelligence and Image Processing
80 rdf:type schema:DefinedTerm
81 sg:journal.1050630 schema:issn 1615-147X
82 1615-1488
83 schema:name Structural and Multidisciplinary Optimization
84 rdf:type schema:Periodical
85 sg:person.01062014757.30 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
86 schema:familyName Park
87 schema:givenName Frank Chongwoo
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062014757.30
89 rdf:type schema:Person
90 sg:pub.10.1007/3-540-47789-6_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028578448
91 https://doi.org/10.1007/3-540-47789-6_1
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/978-3-540-68405-3_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017096150
94 https://doi.org/10.1007/978-3-540-68405-3_18
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s00158-005-0584-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030355112
97 https://doi.org/10.1007/s00158-005-0584-3
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s00158-006-0085-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1012346441
100 https://doi.org/10.1007/s00158-006-0085-z
101 rdf:type schema:CreativeWork
102 sg:pub.10.1023/a:1008102230551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033229969
103 https://doi.org/10.1023/a:1008102230551
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1002/nme.1422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049049755
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/0045-7825(88)90086-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008680660
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/0045-7949(94)90279-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030181208
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0196-8858(90)90017-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1036805253
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026062423
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/s0924-4247(01)00853-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032937147
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/70.143352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061215921
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/iros.1992.587412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086358265
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/jra.1987.1087095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061308659
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/robot.1994.351000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095227364
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/robot.1994.351266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094746810
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/robot.1996.506576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095600935
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/robot.2000.844727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093903858
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1177/027836498600500106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025658127
132 rdf:type schema:CreativeWork
133 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
134 schema:name School of Mechanical and Aerospace Engineering, Seoul National University, 599 Gwanangno, Gwanak-Gu, 151-742, Seoul, South Korea
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...