Machine learning: A structuralist discipline? View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-10-13

AUTHORS

Christophe Bruchansky

ABSTRACT

Advances in machine learning and natural language processing are revolutionizing the way we live, work, and think. As for any science, they are based on assumptions about what the world is, and how humans interact with it. In this paper, I discuss what is potentially one of these assumptions: structuralism, which states that all cultures share a hidden structure. I illustrate this assumption with political footprints: a machine-learning technique using pre-trained word vectors for political discourse analysis. I introduce some of the benefits and limitations of structuralism when applied to machine learning, and the risks of exploiting a technology before establishing the validity of all its hypotheses. I consider how machine-learning techniques could evolve towards hybrid structuralism or post-structuralism, and how deeply these developments would impact cultural studies. More... »

PAGES

1-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00146-017-0764-x

DOI

http://dx.doi.org/10.1007/s00146-017-0764-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092211939


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Plural think tank, Toronto, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bruchansky", 
        "givenName": "Christophe", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3115/v1/d14-1162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099110523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/d14-1162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099110523"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10-13", 
    "datePublishedReg": "2017-10-13", 
    "description": "Advances in machine learning and natural language processing are revolutionizing the way we live, work, and think. As for any science, they are based on assumptions about what the world is, and how humans interact with it. In this paper, I discuss what is potentially one of these assumptions: structuralism, which states that all cultures share a hidden structure. I illustrate this assumption with political footprints: a machine-learning technique using pre-trained word vectors for political discourse analysis. I introduce some of the benefits and limitations of structuralism when applied to machine learning, and the risks of exploiting a technology before establishing the validity of all its hypotheses. I consider how machine-learning techniques could evolve towards hybrid structuralism or post-structuralism, and how deeply these developments would impact cultural studies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00146-017-0764-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1126912", 
        "issn": [
          "0951-5666", 
          "1435-5655"
        ], 
        "name": "AI & SOCIETY", 
        "type": "Periodical"
      }
    ], 
    "name": "Machine learning: A structuralist discipline?", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "280f1267504e7570093c6cb38e18f567c9d04ae86ac0fab217cb04fa9c39ef37"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00146-017-0764-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092211939"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00146-017-0764-x", 
      "https://app.dimensions.ai/details/publication/pub.1092211939"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000560.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00146-017-0764-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00146-017-0764-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00146-017-0764-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00146-017-0764-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00146-017-0764-x'


 

This table displays all metadata directly associated to this object as RDF triples.

56 TRIPLES      21 PREDICATES      25 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00146-017-0764-x schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4a88ddd0ab734c21a9f75cafe1b1fa79
4 schema:citation https://doi.org/10.3115/v1/d14-1162
5 schema:datePublished 2017-10-13
6 schema:datePublishedReg 2017-10-13
7 schema:description Advances in machine learning and natural language processing are revolutionizing the way we live, work, and think. As for any science, they are based on assumptions about what the world is, and how humans interact with it. In this paper, I discuss what is potentially one of these assumptions: structuralism, which states that all cultures share a hidden structure. I illustrate this assumption with political footprints: a machine-learning technique using pre-trained word vectors for political discourse analysis. I introduce some of the benefits and limitations of structuralism when applied to machine learning, and the risks of exploiting a technology before establishing the validity of all its hypotheses. I consider how machine-learning techniques could evolve towards hybrid structuralism or post-structuralism, and how deeply these developments would impact cultural studies.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf sg:journal.1126912
12 schema:name Machine learning: A structuralist discipline?
13 schema:pagination 1-8
14 schema:productId N12018735ba9144eea1b720a059be8f86
15 N78691b93fa3c4d04acc6804409708122
16 N9ec6252c3bd24927825297ec045a3c1e
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092211939
18 https://doi.org/10.1007/s00146-017-0764-x
19 schema:sdDatePublished 2019-04-10T19:16
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher N57fc87a7b9084f7ba7c1d2337543102e
22 schema:url https://link.springer.com/10.1007%2Fs00146-017-0764-x
23 sgo:license sg:explorer/license/
24 sgo:sdDataset articles
25 rdf:type schema:ScholarlyArticle
26 N12018735ba9144eea1b720a059be8f86 schema:name doi
27 schema:value 10.1007/s00146-017-0764-x
28 rdf:type schema:PropertyValue
29 N31b8d98e35eb4b37b6b79e10ecb625f2 schema:name Plural think tank, Toronto, Canada
30 rdf:type schema:Organization
31 N4a88ddd0ab734c21a9f75cafe1b1fa79 rdf:first Nbafc521d8a3f4fb0b4353965e901d7d2
32 rdf:rest rdf:nil
33 N57fc87a7b9084f7ba7c1d2337543102e schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 N78691b93fa3c4d04acc6804409708122 schema:name dimensions_id
36 schema:value pub.1092211939
37 rdf:type schema:PropertyValue
38 N9ec6252c3bd24927825297ec045a3c1e schema:name readcube_id
39 schema:value 280f1267504e7570093c6cb38e18f567c9d04ae86ac0fab217cb04fa9c39ef37
40 rdf:type schema:PropertyValue
41 Nbafc521d8a3f4fb0b4353965e901d7d2 schema:affiliation N31b8d98e35eb4b37b6b79e10ecb625f2
42 schema:familyName Bruchansky
43 schema:givenName Christophe
44 rdf:type schema:Person
45 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
46 schema:name Information and Computing Sciences
47 rdf:type schema:DefinedTerm
48 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
49 schema:name Artificial Intelligence and Image Processing
50 rdf:type schema:DefinedTerm
51 sg:journal.1126912 schema:issn 0951-5666
52 1435-5655
53 schema:name AI & SOCIETY
54 rdf:type schema:Periodical
55 https://doi.org/10.3115/v1/d14-1162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099110523
56 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...