Robust and Efficient Sharing of RSA Functions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-03

AUTHORS

Rosario Gennaro, Tal Rabin, Stanislav Jarecki, Hugo Krawczyk

ABSTRACT

. We present two efficient protocols which implement robust threshold RSA signature schemes, where the power to sign is shared by N players such that any subset of T+1 or more signers can collaborate to produce a valid RSA signature on any given message, but no subset of T or less corrupted players can forge a signature. Our protocols are robust in the sense that the correct signature is computed even if up to T players behave in an arbitrarily malicious way during the signature protocol. This, in particular, includes the cases of players who refuse to participate or who introduce erroneous values into the computation. Our robust protocols achieve optimal resiliency as they can tolerate up to (N-1)/2 faults, and their efficiency is comparable with the efficiency of the underlying threshold RSA signature scheme. Our protocols require RSA moduli which are the product of two safe primes, and that the underlying (centralized) RSA signature scheme is unforgeable. Our techniques also apply to the secure sharing of the RSA decryption function. We show that adding robustness to the existing threshold RSA schemes reduces to solving the problem of how to verify an RSA signature without a public verification More... »

PAGES

273-300

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s001459910011

DOI

http://dx.doi.org/10.1007/s001459910011

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028805095


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM T.J. Watson Research Center, Yorktown Heights, PO Box 704, 10598, NY, U.S.A", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T.J. Watson Research Center, Yorktown Heights, PO Box 704, 10598, NY, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gennaro", 
        "givenName": "Rosario", 
        "id": "sg:person.013573255563.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013573255563.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM T.J. Watson Research Center, Yorktown Heights, PO Box 704, 10598, NY, U.S.A", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T.J. Watson Research Center, Yorktown Heights, PO Box 704, 10598, NY, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rabin", 
        "givenName": "Tal", 
        "id": "sg:person.015473523512.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015473523512.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory of Computer Science, Massachusetts Institute of Technology, 545 Technology Square, 02139, Cambridge, MA, U.S.A", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Laboratory of Computer Science, Massachusetts Institute of Technology, 545 Technology Square, 02139, Cambridge, MA, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jarecki", 
        "givenName": "Stanislav", 
        "id": "sg:person.016140705275.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016140705275.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM T.J. Watson Research Center, Yorktown Heights, PO Box 704, 10598, NY, U.S.A.", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "Department of Electrical Engineering, Technion, 32000, Haifa, Israel", 
            "IBM T.J. Watson Research Center, Yorktown Heights, PO Box 704, 10598, NY, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krawczyk", 
        "givenName": "Hugo", 
        "id": "sg:person.013004021661.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013004021661.30"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-03", 
    "datePublishedReg": "2000-03-01", 
    "description": "Abstract.  We present two efficient protocols which implement robust threshold RSA signature schemes, where the power to sign is shared by N  players such that any subset of T+1  or more signers can collaborate to produce a valid RSA signature on any given message, but no subset of T  or less corrupted players can forge a signature. Our protocols are robust in the sense that the correct signature is computed even if up to T  players behave in an arbitrarily malicious way during the signature protocol. This, in particular, includes the cases of players who refuse to participate or who introduce erroneous values into the computation. Our robust protocols achieve optimal resiliency as they can tolerate up to (N-1)/2  faults, and their efficiency is comparable with the efficiency of the underlying threshold RSA signature scheme. Our protocols require RSA moduli which are the product of two safe primes, and that the underlying (centralized) RSA signature scheme is unforgeable. Our techniques also apply to the secure sharing of the RSA decryption function. We show that adding robustness to the existing threshold RSA schemes reduces to solving the problem of how to verify an RSA signature without a public verification", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s001459910011", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136278", 
        "issn": [
          "0933-2790", 
          "1432-1378"
        ], 
        "name": "Journal of Cryptology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "keywords": [
      "RSA signature scheme", 
      "threshold RSA signature scheme", 
      "signature scheme", 
      "RSA signatures", 
      "threshold RSA scheme", 
      "secure sharing", 
      "malicious way", 
      "efficient sharing", 
      "optimal resiliency", 
      "decryption functions", 
      "case of players", 
      "RSA scheme", 
      "signature protocol", 
      "RSA function", 
      "more signers", 
      "safe primes", 
      "RSA modulus", 
      "correct signature", 
      "sharing", 
      "scheme", 
      "efficient protocol", 
      "protocol", 
      "robust protocol", 
      "erroneous values", 
      "computation", 
      "signers", 
      "messages", 
      "players", 
      "robustness", 
      "robust", 
      "efficiency", 
      "resiliency", 
      "signatures", 
      "faults", 
      "subset", 
      "technique", 
      "way", 
      "power", 
      "function", 
      "sense", 
      "cases", 
      "primes", 
      "products", 
      "values", 
      "problem", 
      "modulus"
    ], 
    "name": "Robust and Efficient Sharing of RSA Functions", 
    "pagination": "273-300", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028805095"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s001459910011"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s001459910011", 
      "https://app.dimensions.ai/details/publication/pub.1028805095"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T09:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_344.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s001459910011"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s001459910011'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s001459910011'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s001459910011'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s001459910011'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      21 PREDICATES      72 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s001459910011 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author Na930852565f54dff92dc701ef12e3dcd
4 schema:datePublished 2000-03
5 schema:datePublishedReg 2000-03-01
6 schema:description Abstract. We present two efficient protocols which implement robust threshold RSA signature schemes, where the power to sign is shared by N players such that any subset of T+1 or more signers can collaborate to produce a valid RSA signature on any given message, but no subset of T or less corrupted players can forge a signature. Our protocols are robust in the sense that the correct signature is computed even if up to T players behave in an arbitrarily malicious way during the signature protocol. This, in particular, includes the cases of players who refuse to participate or who introduce erroneous values into the computation. Our robust protocols achieve optimal resiliency as they can tolerate up to (N-1)/2 faults, and their efficiency is comparable with the efficiency of the underlying threshold RSA signature scheme. Our protocols require RSA moduli which are the product of two safe primes, and that the underlying (centralized) RSA signature scheme is unforgeable. Our techniques also apply to the secure sharing of the RSA decryption function. We show that adding robustness to the existing threshold RSA schemes reduces to solving the problem of how to verify an RSA signature without a public verification
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N61ab66ceb3224a3babcd2dc01b2e6a55
11 Nda8720b5b39a4d938e33d62f4404256b
12 sg:journal.1136278
13 schema:keywords RSA function
14 RSA modulus
15 RSA scheme
16 RSA signature scheme
17 RSA signatures
18 case of players
19 cases
20 computation
21 correct signature
22 decryption functions
23 efficiency
24 efficient protocol
25 efficient sharing
26 erroneous values
27 faults
28 function
29 malicious way
30 messages
31 modulus
32 more signers
33 optimal resiliency
34 players
35 power
36 primes
37 problem
38 products
39 protocol
40 resiliency
41 robust
42 robust protocol
43 robustness
44 safe primes
45 scheme
46 secure sharing
47 sense
48 sharing
49 signature protocol
50 signature scheme
51 signatures
52 signers
53 subset
54 technique
55 threshold RSA scheme
56 threshold RSA signature scheme
57 values
58 way
59 schema:name Robust and Efficient Sharing of RSA Functions
60 schema:pagination 273-300
61 schema:productId N4507b2c93dba40bdab95451ef64eef36
62 Nb1d972ff0b1b46209ea22613b3187102
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028805095
64 https://doi.org/10.1007/s001459910011
65 schema:sdDatePublished 2022-05-10T09:49
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher Ndc0f04e45a1644ca8b1fd06b0b1a9645
68 schema:url https://doi.org/10.1007/s001459910011
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N4507b2c93dba40bdab95451ef64eef36 schema:name dimensions_id
73 schema:value pub.1028805095
74 rdf:type schema:PropertyValue
75 N6121142d3a3140b0a7700b8fa78b90f9 rdf:first sg:person.016140705275.44
76 rdf:rest Naefebbda007543cc8a7903dedada8e52
77 N61ab66ceb3224a3babcd2dc01b2e6a55 schema:volumeNumber 13
78 rdf:type schema:PublicationVolume
79 Na930852565f54dff92dc701ef12e3dcd rdf:first sg:person.013573255563.35
80 rdf:rest Nd91839eaff9942718e83c8211da7e30d
81 Naefebbda007543cc8a7903dedada8e52 rdf:first sg:person.013004021661.30
82 rdf:rest rdf:nil
83 Nb1d972ff0b1b46209ea22613b3187102 schema:name doi
84 schema:value 10.1007/s001459910011
85 rdf:type schema:PropertyValue
86 Nd91839eaff9942718e83c8211da7e30d rdf:first sg:person.015473523512.58
87 rdf:rest N6121142d3a3140b0a7700b8fa78b90f9
88 Nda8720b5b39a4d938e33d62f4404256b schema:issueNumber 2
89 rdf:type schema:PublicationIssue
90 Ndc0f04e45a1644ca8b1fd06b0b1a9645 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
93 schema:name Information and Computing Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
96 schema:name Computation Theory and Mathematics
97 rdf:type schema:DefinedTerm
98 sg:journal.1136278 schema:issn 0933-2790
99 1432-1378
100 schema:name Journal of Cryptology
101 schema:publisher Springer Nature
102 rdf:type schema:Periodical
103 sg:person.013004021661.30 schema:affiliation grid-institutes:grid.481554.9
104 schema:familyName Krawczyk
105 schema:givenName Hugo
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013004021661.30
107 rdf:type schema:Person
108 sg:person.013573255563.35 schema:affiliation grid-institutes:grid.481554.9
109 schema:familyName Gennaro
110 schema:givenName Rosario
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013573255563.35
112 rdf:type schema:Person
113 sg:person.015473523512.58 schema:affiliation grid-institutes:grid.481554.9
114 schema:familyName Rabin
115 schema:givenName Tal
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015473523512.58
117 rdf:type schema:Person
118 sg:person.016140705275.44 schema:affiliation grid-institutes:grid.116068.8
119 schema:familyName Jarecki
120 schema:givenName Stanislav
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016140705275.44
122 rdf:type schema:Person
123 grid-institutes:grid.116068.8 schema:alternateName Laboratory of Computer Science, Massachusetts Institute of Technology, 545 Technology Square, 02139, Cambridge, MA, U.S.A
124 schema:name Laboratory of Computer Science, Massachusetts Institute of Technology, 545 Technology Square, 02139, Cambridge, MA, U.S.A
125 rdf:type schema:Organization
126 grid-institutes:grid.481554.9 schema:alternateName IBM T.J. Watson Research Center, Yorktown Heights, PO Box 704, 10598, NY, U.S.A
127 IBM T.J. Watson Research Center, Yorktown Heights, PO Box 704, 10598, NY, U.S.A.
128 schema:name Department of Electrical Engineering, Technion, 32000, Haifa, Israel
129 IBM T.J. Watson Research Center, Yorktown Heights, PO Box 704, 10598, NY, U.S.A
130 IBM T.J. Watson Research Center, Yorktown Heights, PO Box 704, 10598, NY, U.S.A.
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...