On the Local Leakage Resilience of Linear Secret Sharing Schemes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-02-09

AUTHORS

Fabrice Benhamouda, Akshay Degwekar, Yuval Ishai, Tal Rabin

ABSTRACT

We consider the following basic question: to what extent are standard secret sharing schemes and protocols for secure multiparty computation that build on them resilient to leakage? We focus on a simple local leakage model, where the adversary can apply an arbitrary function of a bounded output length to the secret state of each party, but cannot otherwise learn joint information about the states. We show that additive secret sharing schemes and high-threshold instances of Shamir’s secret sharing scheme are secure under local leakage attacks when the underlying field is of a large prime order and the number of parties is sufficiently large. This should be contrasted with the fact that any linear secret sharing scheme over a small characteristic field is clearly insecure under local leakage attacks, regardless of the number of parties. Our results are obtained via tools from Fourier analysis and additive combinatorics. We present two types of applications of the above results and techniques. As a positive application, we show that the “GMW protocol” for honest-but-curious parties, when implemented using shared products of random field elements (so-called “Beaver Triples”), is resilient in the local leakage model for sufficiently many parties and over certain fields. This holds even when the adversary has full access to a constant fraction of the views. As a negative application, we rule out multiparty variants of the share conversion scheme used in the 2-party homomorphic secret sharing scheme of Boyle et al. (in: Crypto, 2016). More... »

PAGES

10

References to SciGraph publications

  • 2012. Multiparty Computation from Somewhat Homomorphic Encryption in ADVANCES IN CRYPTOLOGY – CRYPTO 2012
  • 2005. Share Conversion, Pseudorandom Secret-Sharing and Applications to Secure Computation in THEORY OF CRYPTOGRAPHY
  • 2001-08. A new proof of Szemerédi's theorem in GEOMETRIC AND FUNCTIONAL ANALYSIS
  • 2017-11-05. How to Construct a Leakage-Resilient (Stateless) Trusted Party in THEORY OF CRYPTOGRAPHY
  • 2012. How to Compute under Leakage without Secure Hardware in ADVANCES IN CRYPTOLOGY – CRYPTO 2012
  • 2014. Leakage-Tolerant Computation with Input-Independent Preprocessing in ADVANCES IN CRYPTOLOGY – CRYPTO 2014
  • 1997. All-or-nothing encryption and the package transform in FAST SOFTWARE ENCRYPTION
  • 2010. Protecting Circuits from Leakage: the Computationally-Bounded and Noisy Cases in ADVANCES IN CRYPTOLOGY – EUROCRYPT 2010
  • 1999-12-16. Differential Power Analysis in ADVANCES IN CRYPTOLOGY — CRYPTO’ 99
  • 2010. Leakage-Resilient Storage in SECURITY AND CRYPTOGRAPHY FOR NETWORKS
  • 2009. Simultaneous Hardcore Bits and Cryptography against Memory Attacks in THEORY OF CRYPTOGRAPHY
  • 2018-07-25. On the Local Leakage Resilience of Linear Secret Sharing Schemes in ADVANCES IN CRYPTOLOGY – CRYPTO 2018
  • 1996. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems in ADVANCES IN CRYPTOLOGY — CRYPTO ’96
  • 2014. Unifying Leakage Models: From Probing Attacks to Noisy Leakage. in ADVANCES IN CRYPTOLOGY – EUROCRYPT 2014
  • 2004. Physically Observable Cryptography in THEORY OF CRYPTOGRAPHY
  • 2016-07-21. Breaking the Circuit Size Barrier for Secure Computation Under DDH in ADVANCES IN CRYPTOLOGY – CRYPTO 2016
  • 2003. Private Circuits: Securing Hardware against Probing Attacks in ADVANCES IN CRYPTOLOGY - CRYPTO 2003
  • 2000-05-12. Exposure-Resilient Functions and All-or-Nothing Transforms in ADVANCES IN CRYPTOLOGY — EUROCRYPT 2000
  • 2011-01-08. Linear Forms and Higher-Degree Uniformity for Functions On in GEOMETRIC AND FUNCTIONAL ANALYSIS
  • 2010. Leakage Resilient ElGamal Encryption in ADVANCES IN CRYPTOLOGY - ASIACRYPT 2010
  • 2015-04-14. Leakage-Resilient Circuits Revisited – Optimal Number of Computing Components Without Leak-Free Hardware in ADVANCES IN CRYPTOLOGY - EUROCRYPT 2015
  • 2001-04-15. On Perfect and Adaptive Security in Exposure-Resilient Cryptography in ADVANCES IN CRYPTOLOGY — EUROCRYPT 2001
  • 2011. Leakage-Resilient Coin Tossing in DISTRIBUTED COMPUTING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00145-021-09375-2

    DOI

    http://dx.doi.org/10.1007/s00145-021-09375-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1135290098


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Data Format", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Algorand Foundation, New York, USA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Algorand Foundation, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benhamouda", 
            "givenName": "Fabrice", 
            "id": "sg:person.014225261625.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014225261625.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Two Sigma Investments, LP, New York, USA", 
              "id": "http://www.grid.ac/institutes/grid.499363.2", 
              "name": [
                "Two Sigma Investments, LP, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Degwekar", 
            "givenName": "Akshay", 
            "id": "sg:person.010656256035.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010656256035.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technion, Haifa, Israel", 
              "id": "http://www.grid.ac/institutes/grid.6451.6", 
              "name": [
                "Technion, Haifa, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ishai", 
            "givenName": "Yuval", 
            "id": "sg:person.010434442160.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010434442160.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Algorand Foundation, New York, USA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Algorand Foundation, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rabin", 
            "givenName": "Tal", 
            "id": "sg:person.015473523512.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015473523512.58"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-13190-5_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040247219", 
              "https://doi.org/10.1007/978-3-642-13190-5_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48405-1_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005179729", 
              "https://doi.org/10.1007/3-540-48405-1_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00039-010-0106-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046072618", 
              "https://doi.org/10.1007/s00039-010-0106-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-70503-3_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092520043", 
              "https://doi.org/10.1007/978-3-319-70503-3_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-32009-5_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038230055", 
              "https://doi.org/10.1007/978-3-642-32009-5_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-68697-5_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047972271", 
              "https://doi.org/10.1007/3-540-68697-5_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-46803-6_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001160298", 
              "https://doi.org/10.1007/978-3-662-46803-6_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-53018-4_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016919521", 
              "https://doi.org/10.1007/978-3-662-53018-4_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44987-6_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015139947", 
              "https://doi.org/10.1007/3-540-44987-6_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-32009-5_38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006048250", 
              "https://doi.org/10.1007/978-3-642-32009-5_38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-45146-4_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004401764", 
              "https://doi.org/10.1007/978-3-540-45146-4_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-00457-5_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014549999", 
              "https://doi.org/10.1007/978-3-642-00457-5_28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15317-4_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041512820", 
              "https://doi.org/10.1007/978-3-642-15317-4_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24638-1_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029805716", 
              "https://doi.org/10.1007/978-3-540-24638-1_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0052348", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009399460", 
              "https://doi.org/10.1007/bfb0052348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-24100-0_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036863115", 
              "https://doi.org/10.1007/978-3-642-24100-0_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-30576-7_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024707329", 
              "https://doi.org/10.1007/978-3-540-30576-7_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-17373-8_34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020950668", 
              "https://doi.org/10.1007/978-3-642-17373-8_34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00039-001-0332-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020828961", 
              "https://doi.org/10.1007/s00039-001-0332-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45539-6_33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043682284", 
              "https://doi.org/10.1007/3-540-45539-6_33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-96884-1_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105813848", 
              "https://doi.org/10.1007/978-3-319-96884-1_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-44381-1_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002459626", 
              "https://doi.org/10.1007/978-3-662-44381-1_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-55220-5_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020739831", 
              "https://doi.org/10.1007/978-3-642-55220-5_24"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-02-09", 
        "datePublishedReg": "2021-02-09", 
        "description": "We consider the following basic question: to what extent are standard secret sharing schemes and protocols for secure multiparty computation that build on them resilient to leakage? We focus on a simple local leakage model, where the adversary can apply an arbitrary function of a bounded output length to the secret state of each party, but cannot otherwise learn joint information about the states. We show that additive secret sharing schemes and high-threshold instances of Shamir\u2019s secret sharing scheme are secure under local leakage attacks when the underlying field is of a large prime order and the number of parties is sufficiently large. This should be contrasted with the fact that any linear secret sharing scheme over a small characteristic field is clearly insecure under local leakage attacks, regardless of the number of parties. Our results are obtained via tools from Fourier analysis and additive combinatorics. We present two types of applications of the above results and techniques. As a positive application, we show that the \u201cGMW protocol\u201d for honest-but-curious parties, when implemented using shared products of random field elements (so-called \u201cBeaver Triples\u201d), is resilient in the local leakage model for sufficiently many parties and over certain fields. This holds even when the adversary has full access to a constant fraction of the views. As a negative application, we rule out multiparty variants of the share conversion scheme used in the 2-party homomorphic secret sharing scheme of Boyle et al. (in: Crypto, 2016).", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00145-021-09375-2", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136278", 
            "issn": [
              "0933-2790", 
              "1432-1378"
            ], 
            "name": "Journal of Cryptology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "34"
          }
        ], 
        "keywords": [
          "secret sharing scheme", 
          "linear secret sharing scheme", 
          "sharing scheme", 
          "leakage attacks", 
          "Shamir's secret sharing scheme", 
          "secure multiparty computation", 
          "homomorphic secret sharing scheme", 
          "small characteristic fields", 
          "number of parties", 
          "large prime order", 
          "types of applications", 
          "multiparty computation", 
          "GMW protocol", 
          "leakage resilience", 
          "leakage model", 
          "random field elements", 
          "curious parties", 
          "joint information", 
          "secret state", 
          "negative applications", 
          "full access", 
          "field elements", 
          "adversary", 
          "output length", 
          "scheme", 
          "additive combinatorics", 
          "attacks", 
          "applications", 
          "certain fields", 
          "underlying field", 
          "conversion scheme", 
          "prime order", 
          "protocol", 
          "computation", 
          "constant fraction", 
          "parties", 
          "positive application", 
          "information", 
          "instances", 
          "access", 
          "tool", 
          "model", 
          "arbitrary functions", 
          "characteristic fields", 
          "combinatorics", 
          "field", 
          "technique", 
          "number", 
          "Fourier analysis", 
          "order", 
          "state", 
          "results", 
          "view", 
          "resilience", 
          "basic questions", 
          "variants", 
          "fact", 
          "elements", 
          "types", 
          "function", 
          "analysis", 
          "questions", 
          "above results", 
          "products", 
          "al", 
          "length", 
          "extent", 
          "Boyle", 
          "fraction"
        ], 
        "name": "On the Local Leakage Resilience of Linear Secret Sharing Schemes", 
        "pagination": "10", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1135290098"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00145-021-09375-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00145-021-09375-2", 
          "https://app.dimensions.ai/details/publication/pub.1135290098"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T10:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_919.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00145-021-09375-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00145-021-09375-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00145-021-09375-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00145-021-09375-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00145-021-09375-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    246 TRIPLES      22 PREDICATES      117 URIs      86 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00145-021-09375-2 schema:about anzsrc-for:08
    2 anzsrc-for:0804
    3 schema:author N29f503e023bf48eb88a9018bd6c0efd4
    4 schema:citation sg:pub.10.1007/3-540-44987-6_19
    5 sg:pub.10.1007/3-540-45539-6_33
    6 sg:pub.10.1007/3-540-48405-1_25
    7 sg:pub.10.1007/3-540-68697-5_9
    8 sg:pub.10.1007/978-3-319-70503-3_7
    9 sg:pub.10.1007/978-3-319-96884-1_18
    10 sg:pub.10.1007/978-3-540-24638-1_16
    11 sg:pub.10.1007/978-3-540-30576-7_19
    12 sg:pub.10.1007/978-3-540-45146-4_27
    13 sg:pub.10.1007/978-3-642-00457-5_28
    14 sg:pub.10.1007/978-3-642-13190-5_7
    15 sg:pub.10.1007/978-3-642-15317-4_9
    16 sg:pub.10.1007/978-3-642-17373-8_34
    17 sg:pub.10.1007/978-3-642-24100-0_16
    18 sg:pub.10.1007/978-3-642-32009-5_32
    19 sg:pub.10.1007/978-3-642-32009-5_38
    20 sg:pub.10.1007/978-3-642-55220-5_24
    21 sg:pub.10.1007/978-3-662-44381-1_9
    22 sg:pub.10.1007/978-3-662-46803-6_5
    23 sg:pub.10.1007/978-3-662-53018-4_19
    24 sg:pub.10.1007/bfb0052348
    25 sg:pub.10.1007/s00039-001-0332-9
    26 sg:pub.10.1007/s00039-010-0106-3
    27 schema:datePublished 2021-02-09
    28 schema:datePublishedReg 2021-02-09
    29 schema:description We consider the following basic question: to what extent are standard secret sharing schemes and protocols for secure multiparty computation that build on them resilient to leakage? We focus on a simple local leakage model, where the adversary can apply an arbitrary function of a bounded output length to the secret state of each party, but cannot otherwise learn joint information about the states. We show that additive secret sharing schemes and high-threshold instances of Shamir’s secret sharing scheme are secure under local leakage attacks when the underlying field is of a large prime order and the number of parties is sufficiently large. This should be contrasted with the fact that any linear secret sharing scheme over a small characteristic field is clearly insecure under local leakage attacks, regardless of the number of parties. Our results are obtained via tools from Fourier analysis and additive combinatorics. We present two types of applications of the above results and techniques. As a positive application, we show that the “GMW protocol” for honest-but-curious parties, when implemented using shared products of random field elements (so-called “Beaver Triples”), is resilient in the local leakage model for sufficiently many parties and over certain fields. This holds even when the adversary has full access to a constant fraction of the views. As a negative application, we rule out multiparty variants of the share conversion scheme used in the 2-party homomorphic secret sharing scheme of Boyle et al. (in: Crypto, 2016).
    30 schema:genre article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N48ec78565da045eca73ede51398af26f
    34 Nbbaf97a655864e7f9864f9aa1c5eb7e8
    35 sg:journal.1136278
    36 schema:keywords Boyle
    37 Fourier analysis
    38 GMW protocol
    39 Shamir's secret sharing scheme
    40 above results
    41 access
    42 additive combinatorics
    43 adversary
    44 al
    45 analysis
    46 applications
    47 arbitrary functions
    48 attacks
    49 basic questions
    50 certain fields
    51 characteristic fields
    52 combinatorics
    53 computation
    54 constant fraction
    55 conversion scheme
    56 curious parties
    57 elements
    58 extent
    59 fact
    60 field
    61 field elements
    62 fraction
    63 full access
    64 function
    65 homomorphic secret sharing scheme
    66 information
    67 instances
    68 joint information
    69 large prime order
    70 leakage attacks
    71 leakage model
    72 leakage resilience
    73 length
    74 linear secret sharing scheme
    75 model
    76 multiparty computation
    77 negative applications
    78 number
    79 number of parties
    80 order
    81 output length
    82 parties
    83 positive application
    84 prime order
    85 products
    86 protocol
    87 questions
    88 random field elements
    89 resilience
    90 results
    91 scheme
    92 secret sharing scheme
    93 secret state
    94 secure multiparty computation
    95 sharing scheme
    96 small characteristic fields
    97 state
    98 technique
    99 tool
    100 types
    101 types of applications
    102 underlying field
    103 variants
    104 view
    105 schema:name On the Local Leakage Resilience of Linear Secret Sharing Schemes
    106 schema:pagination 10
    107 schema:productId N644a2c0ddbab421c99205ec56a237723
    108 N68dad7dce63c4d36819a12805a7a187e
    109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135290098
    110 https://doi.org/10.1007/s00145-021-09375-2
    111 schema:sdDatePublished 2022-05-10T10:32
    112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    113 schema:sdPublisher Ncde9cc6d518a41c89dd54bb9cce23faf
    114 schema:url https://doi.org/10.1007/s00145-021-09375-2
    115 sgo:license sg:explorer/license/
    116 sgo:sdDataset articles
    117 rdf:type schema:ScholarlyArticle
    118 N29f503e023bf48eb88a9018bd6c0efd4 rdf:first sg:person.014225261625.94
    119 rdf:rest N5ac9f77fa498483cabb0681f45aaa959
    120 N42b15f0fbc8049dbb5f8c8d968b4c992 rdf:first sg:person.010434442160.49
    121 rdf:rest Ndf00f99a82154e3b822090bc46afb504
    122 N48ec78565da045eca73ede51398af26f schema:volumeNumber 34
    123 rdf:type schema:PublicationVolume
    124 N5ac9f77fa498483cabb0681f45aaa959 rdf:first sg:person.010656256035.18
    125 rdf:rest N42b15f0fbc8049dbb5f8c8d968b4c992
    126 N644a2c0ddbab421c99205ec56a237723 schema:name doi
    127 schema:value 10.1007/s00145-021-09375-2
    128 rdf:type schema:PropertyValue
    129 N68dad7dce63c4d36819a12805a7a187e schema:name dimensions_id
    130 schema:value pub.1135290098
    131 rdf:type schema:PropertyValue
    132 Nbbaf97a655864e7f9864f9aa1c5eb7e8 schema:issueNumber 2
    133 rdf:type schema:PublicationIssue
    134 Ncde9cc6d518a41c89dd54bb9cce23faf schema:name Springer Nature - SN SciGraph project
    135 rdf:type schema:Organization
    136 Ndf00f99a82154e3b822090bc46afb504 rdf:first sg:person.015473523512.58
    137 rdf:rest rdf:nil
    138 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    139 schema:name Information and Computing Sciences
    140 rdf:type schema:DefinedTerm
    141 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
    142 schema:name Data Format
    143 rdf:type schema:DefinedTerm
    144 sg:journal.1136278 schema:issn 0933-2790
    145 1432-1378
    146 schema:name Journal of Cryptology
    147 schema:publisher Springer Nature
    148 rdf:type schema:Periodical
    149 sg:person.010434442160.49 schema:affiliation grid-institutes:grid.6451.6
    150 schema:familyName Ishai
    151 schema:givenName Yuval
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010434442160.49
    153 rdf:type schema:Person
    154 sg:person.010656256035.18 schema:affiliation grid-institutes:grid.499363.2
    155 schema:familyName Degwekar
    156 schema:givenName Akshay
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010656256035.18
    158 rdf:type schema:Person
    159 sg:person.014225261625.94 schema:affiliation grid-institutes:None
    160 schema:familyName Benhamouda
    161 schema:givenName Fabrice
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014225261625.94
    163 rdf:type schema:Person
    164 sg:person.015473523512.58 schema:affiliation grid-institutes:None
    165 schema:familyName Rabin
    166 schema:givenName Tal
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015473523512.58
    168 rdf:type schema:Person
    169 sg:pub.10.1007/3-540-44987-6_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015139947
    170 https://doi.org/10.1007/3-540-44987-6_19
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/3-540-45539-6_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043682284
    173 https://doi.org/10.1007/3-540-45539-6_33
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/3-540-48405-1_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005179729
    176 https://doi.org/10.1007/3-540-48405-1_25
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/3-540-68697-5_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047972271
    179 https://doi.org/10.1007/3-540-68697-5_9
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/978-3-319-70503-3_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092520043
    182 https://doi.org/10.1007/978-3-319-70503-3_7
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/978-3-319-96884-1_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105813848
    185 https://doi.org/10.1007/978-3-319-96884-1_18
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/978-3-540-24638-1_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029805716
    188 https://doi.org/10.1007/978-3-540-24638-1_16
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/978-3-540-30576-7_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024707329
    191 https://doi.org/10.1007/978-3-540-30576-7_19
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/978-3-540-45146-4_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004401764
    194 https://doi.org/10.1007/978-3-540-45146-4_27
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/978-3-642-00457-5_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014549999
    197 https://doi.org/10.1007/978-3-642-00457-5_28
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/978-3-642-13190-5_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040247219
    200 https://doi.org/10.1007/978-3-642-13190-5_7
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/978-3-642-15317-4_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041512820
    203 https://doi.org/10.1007/978-3-642-15317-4_9
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/978-3-642-17373-8_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020950668
    206 https://doi.org/10.1007/978-3-642-17373-8_34
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/978-3-642-24100-0_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036863115
    209 https://doi.org/10.1007/978-3-642-24100-0_16
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/978-3-642-32009-5_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038230055
    212 https://doi.org/10.1007/978-3-642-32009-5_32
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/978-3-642-32009-5_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006048250
    215 https://doi.org/10.1007/978-3-642-32009-5_38
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/978-3-642-55220-5_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020739831
    218 https://doi.org/10.1007/978-3-642-55220-5_24
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/978-3-662-44381-1_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002459626
    221 https://doi.org/10.1007/978-3-662-44381-1_9
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/978-3-662-46803-6_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001160298
    224 https://doi.org/10.1007/978-3-662-46803-6_5
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/978-3-662-53018-4_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016919521
    227 https://doi.org/10.1007/978-3-662-53018-4_19
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/bfb0052348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009399460
    230 https://doi.org/10.1007/bfb0052348
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/s00039-001-0332-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020828961
    233 https://doi.org/10.1007/s00039-001-0332-9
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/s00039-010-0106-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046072618
    236 https://doi.org/10.1007/s00039-010-0106-3
    237 rdf:type schema:CreativeWork
    238 grid-institutes:None schema:alternateName Algorand Foundation, New York, USA
    239 schema:name Algorand Foundation, New York, USA
    240 rdf:type schema:Organization
    241 grid-institutes:grid.499363.2 schema:alternateName Two Sigma Investments, LP, New York, USA
    242 schema:name Two Sigma Investments, LP, New York, USA
    243 rdf:type schema:Organization
    244 grid-institutes:grid.6451.6 schema:alternateName Technion, Haifa, Israel
    245 schema:name Technion, Haifa, Israel
    246 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...