Reusable Fuzzy Extractors for Low-Entropy Distributions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-11-23

AUTHORS

Ran Canetti, Benjamin Fuller, Omer Paneth, Leonid Reyzin, Adam Smith

ABSTRACT

Fuzzy extractors (Dodis et al., in Advances in cryptology—EUROCRYPT 2014, Springer, Berlin, 2014, pp 93–110) convert repeated noisy readings of a secret into the same uniformly distributed key. To eliminate noise, they require an initial enrollment phase that takes the first noisy reading of the secret and produces a nonsecret helper string to be used in subsequent readings. Reusable fuzzy extractors (Boyen, in Proceedings of the 11th ACM conference on computer and communications security, CCS, ACM, New York, 2004, pp 82–91) remain secure even when this initial enrollment phase is repeated multiple times with noisy versions of the same secret, producing multiple helper strings (for example, when a single person’s biometric is enrolled with multiple unrelated organizations). We construct the first reusable fuzzy extractor that makes no assumptions about how multiple readings of the source are correlated. The extractor works for binary strings with Hamming noise; it achieves computational security under the existence of digital lockers (Canetti and Dakdouk, in Advances in cryptology—EUROCRYPT 2008, Springer, Berlin, 2008, pp 489–508). It is simple and tolerates near-linear error rates. Our reusable extractor is secure for source distributions of linear min-entropy rate. The construction is also secure for sources with much lower entropy rates—lower than those supported by prior (nonreusable) constructions—assuming that the distribution has some additional structure, namely, that random subsequences of the source have sufficient minentropy. Structure beyond entropy is necessary to support distributions with low entropy rates. We then explore further how different structural properties of a noisy source can be used to construct fuzzy extractors when the error rates are high, building a computationally secure and an information-theoretically secure construction for large-alphabet sources. More... »

PAGES

2

References to SciGraph publications

  • 2014. On Virtual Grey Box Obfuscation for General Circuits in ADVANCES IN CRYPTOLOGY – CRYPTO 2014
  • 2009. Low-Overhead Implementation of a Soft Decision Helper Data Algorithm for SRAM PUFs in CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2009
  • 2016-11-09. When Are Fuzzy Extractors Possible? in ADVANCES IN CRYPTOLOGY – ASIACRYPT 2016
  • 2006. Read-Proof Hardware from Protective Coatings in CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2006
  • 2009. Biometric-Based Non-transferable Anonymous Credentials in INFORMATION AND COMMUNICATIONS SECURITY
  • 1997. Towards realizing random oracles: Hash functions that hide all partial information in ADVANCES IN CRYPTOLOGY — CRYPTO '97
  • 2010. Cryptographic Extraction and Key Derivation: The HKDF Scheme in ADVANCES IN CRYPTOLOGY – CRYPTO 2010
  • 2005. One-Way Secret-Key Agreement and Applications to Circuit Polarization and Immunization of Public-Key Encryption in ADVANCES IN CRYPTOLOGY – CRYPTO 2005
  • 2013. Computational Fuzzy Extractors in ADVANCES IN CRYPTOLOGY - ASIACRYPT 2013
  • 2005. Secure Remote Authentication Using Biometric Data in ADVANCES IN CRYPTOLOGY – EUROCRYPT 2005
  • 2016-09-27. On Virtual Grey Box Obfuscation for General Circuits in ALGORITHMICA
  • 2008-01-01. Detection of Algebraic Manipulation with Applications to Robust Secret Sharing and Fuzzy Extractors in ADVANCES IN CRYPTOLOGY – EUROCRYPT 2008
  • 2019-09-02. Cryptographic Authentication from the Iris in INFORMATION SECURITY
  • 2002-02. Password hardening based on keystroke dynamics in INTERNATIONAL JOURNAL OF INFORMATION SECURITY
  • 2004. Positive Results and Techniques for Obfuscation in ADVANCES IN CRYPTOLOGY - EUROCRYPT 2004
  • 1997. Privacy amplification secure against active adversaries in ADVANCES IN CRYPTOLOGY — CRYPTO '97
  • 2000. Are Passfaces More Usable Than Passwords? A Field Trial Investigation in PEOPLE AND COMPUTERS XIV — USABILITY OR ELSE!
  • 2017-06-02. Efficient, Reusable Fuzzy Extractors from LWE in CYBER SECURITY CRYPTOGRAPHY AND MACHINE LEARNING
  • 1996. Towards characterizing when information-theoretic secret key agreement is possible in ADVANCES IN CRYPTOLOGY — ASIACRYPT '96
  • 2014. Key Derivation without Entropy Waste in ADVANCES IN CRYPTOLOGY – EUROCRYPT 2014
  • 2011. A Sample of Samplers: A Computational Perspective on Sampling in STUDIES IN COMPLEXITY AND CRYPTOGRAPHY. MISCELLANEA ON THE INTERPLAY BETWEEN RANDOMNESS AND COMPUTATION
  • 2008-01-01. Obfuscating Point Functions with Multibit Output in ADVANCES IN CRYPTOLOGY – EUROCRYPT 2008
  • 2003. On Constructing Locally Computable Extractors and Cryptosystems in the Bounded Storage Model in ADVANCES IN CRYPTOLOGY - CRYPTO 2003
  • 1997. Information-Theoretically Secure Secret-Key Agreement by NOT Authenticated Public Discussion in ADVANCES IN CRYPTOLOGY — EUROCRYPT ’97
  • 2018-06-13. Reusable Fuzzy Extractor from LWE in INFORMATION SECURITY AND PRIVACY
  • 2010. On Strong Simulation and Composable Point Obfuscation in ADVANCES IN CRYPTOLOGY – CRYPTO 2010
  • 2017-08-02. A New Distribution-Sensitive Secure Sketch and Popularity-Proportional Hashing in ADVANCES IN CRYPTOLOGY – CRYPTO 2017
  • 2016-04-28. Reusable Fuzzy Extractors for Low-Entropy Distributions in ADVANCES IN CRYPTOLOGY – EUROCRYPT 2016
  • 2018-01-25. Reusable fuzzy extractor from the decisional Diffie–Hellman assumption in DESIGNS, CODES AND CRYPTOGRAPHY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00145-020-09367-8

    DOI

    http://dx.doi.org/10.1007/s00145-020-09367-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1132941875


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Data Format", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Tel Aviv University, Tel Aviv, Israel", 
              "id": "http://www.grid.ac/institutes/grid.12136.37", 
              "name": [
                "Boston University, Boston, USA", 
                "Tel Aviv University, Tel Aviv, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Canetti", 
            "givenName": "Ran", 
            "id": "sg:person.012320111457.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012320111457.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Connecticut, Storrs, USA", 
              "id": "http://www.grid.ac/institutes/grid.63054.34", 
              "name": [
                "University of Connecticut, Storrs, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fuller", 
            "givenName": "Benjamin", 
            "id": "sg:person.013244656177.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013244656177.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts Institute of Technology, Cambridge, USA", 
              "id": "http://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Massachusetts Institute of Technology, Cambridge, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paneth", 
            "givenName": "Omer", 
            "id": "sg:person.014073524511.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014073524511.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Boston University, Boston, USA", 
              "id": "http://www.grid.ac/institutes/grid.189504.1", 
              "name": [
                "Boston University, Boston, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Reyzin", 
            "givenName": "Leonid", 
            "id": "sg:person.016627532062.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016627532062.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Boston University, Boston, USA", 
              "id": "http://www.grid.ac/institutes/grid.189504.1", 
              "name": [
                "Boston University, Boston, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Smith", 
            "givenName": "Adam", 
            "id": "sg:person.013307226666.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013307226666.21"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-55220-5_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034736534", 
              "https://doi.org/10.1007/978-3-642-55220-5_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-69053-0_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047413612", 
              "https://doi.org/10.1007/3-540-69053-0_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0052244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012602811", 
              "https://doi.org/10.1007/bfb0052244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4471-0515-2_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043279260", 
              "https://doi.org/10.1007/978-1-4471-0515-2_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s102070100006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008722744", 
              "https://doi.org/10.1007/s102070100006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-14623-7_34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012218885", 
              "https://doi.org/10.1007/978-3-642-14623-7_34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-45146-4_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001240361", 
              "https://doi.org/10.1007/978-3-540-45146-4_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-53887-6_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084920151", 
              "https://doi.org/10.1007/978-3-662-53887-6_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11426639_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047382454", 
              "https://doi.org/10.1007/11426639_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-44381-1_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006934572", 
              "https://doi.org/10.1007/978-3-662-44381-1_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11894063_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005869106", 
              "https://doi.org/10.1007/11894063_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-60080-2_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089967528", 
              "https://doi.org/10.1007/978-3-319-60080-2_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-04138-9_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037474974", 
              "https://doi.org/10.1007/978-3-642-04138-9_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-93638-3_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104575151", 
              "https://doi.org/10.1007/978-3-319-93638-3_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11535218_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010535182", 
              "https://doi.org/10.1007/11535218_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24676-3_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035756543", 
              "https://doi.org/10.1007/978-3-540-24676-3_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-42033-7_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014500804", 
              "https://doi.org/10.1007/978-3-642-42033-7_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-14623-7_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052251590", 
              "https://doi.org/10.1007/978-3-642-14623-7_28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-22670-0_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036241586", 
              "https://doi.org/10.1007/978-3-642-22670-0_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-78967-3_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020737814", 
              "https://doi.org/10.1007/978-3-540-78967-3_28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-49890-3_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014328379", 
              "https://doi.org/10.1007/978-3-662-49890-3_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-78967-3_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037449861", 
              "https://doi.org/10.1007/978-3-540-78967-3_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0052255", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033233326", 
              "https://doi.org/10.1007/bfb0052255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0034847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006305048", 
              "https://doi.org/10.1007/bfb0034847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-30215-3_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120756873", 
              "https://doi.org/10.1007/978-3-030-30215-3_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00453-016-0218-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006324643", 
              "https://doi.org/10.1007/s00453-016-0218-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-018-0459-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100618927", 
              "https://doi.org/10.1007/s10623-018-0459-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-63697-9_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091024670", 
              "https://doi.org/10.1007/978-3-319-63697-9_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-11145-7_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012296037", 
              "https://doi.org/10.1007/978-3-642-11145-7_14"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-11-23", 
        "datePublishedReg": "2020-11-23", 
        "description": "Fuzzy extractors (Dodis et al., in Advances in cryptology\u2014EUROCRYPT 2014, Springer, Berlin, 2014, pp 93\u2013110) convert repeated noisy readings of a secret into the same uniformly distributed key. To eliminate noise, they require an initial enrollment phase that takes the first noisy reading of the secret and produces a nonsecret helper string to be used in subsequent readings. Reusable fuzzy extractors (Boyen, in Proceedings of the 11th ACM conference on computer and communications security, CCS, ACM, New York, 2004, pp 82\u201391) remain secure even when this initial enrollment phase is repeated multiple times with noisy versions of the same secret, producing multiple helper strings (for example, when a single person\u2019s biometric is enrolled with multiple unrelated organizations). We construct the first reusable fuzzy extractor that makes no assumptions about how multiple readings of the source are correlated. The extractor works for binary strings with Hamming noise; it achieves computational security under the existence of digital lockers (Canetti and Dakdouk, in Advances in cryptology\u2014EUROCRYPT 2008, Springer, Berlin, 2008, pp 489\u2013508). It is simple and tolerates near-linear error rates. Our reusable extractor is secure for source distributions of linear min-entropy rate. The construction is also secure for sources with much lower entropy rates\u2014lower than those supported by prior (nonreusable) constructions\u2014assuming that the distribution has some additional structure, namely, that random subsequences of the source have sufficient minentropy. Structure beyond entropy is necessary to support distributions with low entropy rates. We then explore further how different structural properties of a noisy source can be used to construct fuzzy extractors when the error rates are high, building a computationally secure and an information-theoretically secure construction for large-alphabet sources.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00145-020-09367-8", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3140831", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3850679", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3849556", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3848304", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7438402", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7912009", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3107274", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3114602", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3582257", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3092831", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3084991", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3849724", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3114586", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136278", 
            "issn": [
              "0933-2790", 
              "1432-1378"
            ], 
            "name": "Journal of Cryptology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "34"
          }
        ], 
        "keywords": [
          "fuzzy extractor", 
          "initial enrollment phase", 
          "noisy readings", 
          "enrollment phase", 
          "large alphabet sources", 
          "reusable fuzzy extractor", 
          "error rate", 
          "computational security", 
          "digital locker", 
          "secure construction", 
          "same secret", 
          "noisy version", 
          "noisy sources", 
          "lower entropy rate", 
          "extractor", 
          "min-entropy rate", 
          "binary strings", 
          "random subsequences", 
          "secrets", 
          "minentropy", 
          "multiple times", 
          "security", 
          "string", 
          "entropy rate", 
          "subsequences", 
          "noise", 
          "key", 
          "information", 
          "entropy distribution", 
          "lockers", 
          "additional structure", 
          "construction", 
          "version", 
          "source distribution", 
          "different structural properties", 
          "tolerates", 
          "source", 
          "entropy", 
          "multiple readings", 
          "reading", 
          "time", 
          "assumption", 
          "structure", 
          "distribution", 
          "subsequent reading", 
          "phase", 
          "rate", 
          "structural properties", 
          "converts", 
          "existence", 
          "properties"
        ], 
        "name": "Reusable Fuzzy Extractors for Low-Entropy Distributions", 
        "pagination": "2", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1132941875"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00145-020-09367-8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00145-020-09367-8", 
          "https://app.dimensions.ai/details/publication/pub.1132941875"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_836.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00145-020-09367-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00145-020-09367-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00145-020-09367-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00145-020-09367-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00145-020-09367-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    289 TRIPLES      22 PREDICATES      105 URIs      68 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00145-020-09367-8 schema:about anzsrc-for:08
    2 anzsrc-for:0804
    3 schema:author N35b181973e374e56b90083c8daac5f99
    4 schema:citation sg:pub.10.1007/11426639_9
    5 sg:pub.10.1007/11535218_29
    6 sg:pub.10.1007/11894063_29
    7 sg:pub.10.1007/3-540-69053-0_15
    8 sg:pub.10.1007/978-1-4471-0515-2_27
    9 sg:pub.10.1007/978-3-030-30215-3_23
    10 sg:pub.10.1007/978-3-319-60080-2_1
    11 sg:pub.10.1007/978-3-319-63697-9_23
    12 sg:pub.10.1007/978-3-319-93638-3_2
    13 sg:pub.10.1007/978-3-540-24676-3_2
    14 sg:pub.10.1007/978-3-540-45146-4_4
    15 sg:pub.10.1007/978-3-540-78967-3_27
    16 sg:pub.10.1007/978-3-540-78967-3_28
    17 sg:pub.10.1007/978-3-642-04138-9_24
    18 sg:pub.10.1007/978-3-642-11145-7_14
    19 sg:pub.10.1007/978-3-642-14623-7_28
    20 sg:pub.10.1007/978-3-642-14623-7_34
    21 sg:pub.10.1007/978-3-642-22670-0_24
    22 sg:pub.10.1007/978-3-642-42033-7_10
    23 sg:pub.10.1007/978-3-642-55220-5_6
    24 sg:pub.10.1007/978-3-662-44381-1_7
    25 sg:pub.10.1007/978-3-662-49890-3_5
    26 sg:pub.10.1007/978-3-662-53887-6_10
    27 sg:pub.10.1007/bfb0034847
    28 sg:pub.10.1007/bfb0052244
    29 sg:pub.10.1007/bfb0052255
    30 sg:pub.10.1007/s00453-016-0218-8
    31 sg:pub.10.1007/s102070100006
    32 sg:pub.10.1007/s10623-018-0459-4
    33 schema:datePublished 2020-11-23
    34 schema:datePublishedReg 2020-11-23
    35 schema:description Fuzzy extractors (Dodis et al., in Advances in cryptology—EUROCRYPT 2014, Springer, Berlin, 2014, pp 93–110) convert repeated noisy readings of a secret into the same uniformly distributed key. To eliminate noise, they require an initial enrollment phase that takes the first noisy reading of the secret and produces a nonsecret helper string to be used in subsequent readings. Reusable fuzzy extractors (Boyen, in Proceedings of the 11th ACM conference on computer and communications security, CCS, ACM, New York, 2004, pp 82–91) remain secure even when this initial enrollment phase is repeated multiple times with noisy versions of the same secret, producing multiple helper strings (for example, when a single person’s biometric is enrolled with multiple unrelated organizations). We construct the first reusable fuzzy extractor that makes no assumptions about how multiple readings of the source are correlated. The extractor works for binary strings with Hamming noise; it achieves computational security under the existence of digital lockers (Canetti and Dakdouk, in Advances in cryptology—EUROCRYPT 2008, Springer, Berlin, 2008, pp 489–508). It is simple and tolerates near-linear error rates. Our reusable extractor is secure for source distributions of linear min-entropy rate. The construction is also secure for sources with much lower entropy rates—lower than those supported by prior (nonreusable) constructions—assuming that the distribution has some additional structure, namely, that random subsequences of the source have sufficient minentropy. Structure beyond entropy is necessary to support distributions with low entropy rates. We then explore further how different structural properties of a noisy source can be used to construct fuzzy extractors when the error rates are high, building a computationally secure and an information-theoretically secure construction for large-alphabet sources.
    36 schema:genre article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree true
    39 schema:isPartOf N1d03f91d4f7c448884f46b520810e390
    40 N9e0e953462c14c8992aeed05ce3836cd
    41 sg:journal.1136278
    42 schema:keywords additional structure
    43 assumption
    44 binary strings
    45 computational security
    46 construction
    47 converts
    48 different structural properties
    49 digital locker
    50 distribution
    51 enrollment phase
    52 entropy
    53 entropy distribution
    54 entropy rate
    55 error rate
    56 existence
    57 extractor
    58 fuzzy extractor
    59 information
    60 initial enrollment phase
    61 key
    62 large alphabet sources
    63 lockers
    64 lower entropy rate
    65 min-entropy rate
    66 minentropy
    67 multiple readings
    68 multiple times
    69 noise
    70 noisy readings
    71 noisy sources
    72 noisy version
    73 phase
    74 properties
    75 random subsequences
    76 rate
    77 reading
    78 reusable fuzzy extractor
    79 same secret
    80 secrets
    81 secure construction
    82 security
    83 source
    84 source distribution
    85 string
    86 structural properties
    87 structure
    88 subsequences
    89 subsequent reading
    90 time
    91 tolerates
    92 version
    93 schema:name Reusable Fuzzy Extractors for Low-Entropy Distributions
    94 schema:pagination 2
    95 schema:productId N4255f0dc5c21441e8de34edf6b5035f3
    96 N8e9f8baae02f4aaaa39da859a25d5553
    97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132941875
    98 https://doi.org/10.1007/s00145-020-09367-8
    99 schema:sdDatePublished 2022-06-01T22:20
    100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    101 schema:sdPublisher Nf59e0c92f6e24432ac06e8a8088814ac
    102 schema:url https://doi.org/10.1007/s00145-020-09367-8
    103 sgo:license sg:explorer/license/
    104 sgo:sdDataset articles
    105 rdf:type schema:ScholarlyArticle
    106 N02248775fbf7481b9b3275861ff81e1a rdf:first sg:person.014073524511.68
    107 rdf:rest N0bd0cbdbdf984106a1ab40be5f64caf0
    108 N0bd0cbdbdf984106a1ab40be5f64caf0 rdf:first sg:person.016627532062.10
    109 rdf:rest N831875b446b143368e9c2dd11bab378e
    110 N1d03f91d4f7c448884f46b520810e390 schema:volumeNumber 34
    111 rdf:type schema:PublicationVolume
    112 N35b181973e374e56b90083c8daac5f99 rdf:first sg:person.012320111457.74
    113 rdf:rest N9a8e4b65898a490dbb1a7a74d3c070b1
    114 N4255f0dc5c21441e8de34edf6b5035f3 schema:name dimensions_id
    115 schema:value pub.1132941875
    116 rdf:type schema:PropertyValue
    117 N831875b446b143368e9c2dd11bab378e rdf:first sg:person.013307226666.21
    118 rdf:rest rdf:nil
    119 N8e9f8baae02f4aaaa39da859a25d5553 schema:name doi
    120 schema:value 10.1007/s00145-020-09367-8
    121 rdf:type schema:PropertyValue
    122 N9a8e4b65898a490dbb1a7a74d3c070b1 rdf:first sg:person.013244656177.72
    123 rdf:rest N02248775fbf7481b9b3275861ff81e1a
    124 N9e0e953462c14c8992aeed05ce3836cd schema:issueNumber 1
    125 rdf:type schema:PublicationIssue
    126 Nf59e0c92f6e24432ac06e8a8088814ac schema:name Springer Nature - SN SciGraph project
    127 rdf:type schema:Organization
    128 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Information and Computing Sciences
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Data Format
    133 rdf:type schema:DefinedTerm
    134 sg:grant.3084991 http://pending.schema.org/fundedItem sg:pub.10.1007/s00145-020-09367-8
    135 rdf:type schema:MonetaryGrant
    136 sg:grant.3092831 http://pending.schema.org/fundedItem sg:pub.10.1007/s00145-020-09367-8
    137 rdf:type schema:MonetaryGrant
    138 sg:grant.3107274 http://pending.schema.org/fundedItem sg:pub.10.1007/s00145-020-09367-8
    139 rdf:type schema:MonetaryGrant
    140 sg:grant.3114586 http://pending.schema.org/fundedItem sg:pub.10.1007/s00145-020-09367-8
    141 rdf:type schema:MonetaryGrant
    142 sg:grant.3114602 http://pending.schema.org/fundedItem sg:pub.10.1007/s00145-020-09367-8
    143 rdf:type schema:MonetaryGrant
    144 sg:grant.3140831 http://pending.schema.org/fundedItem sg:pub.10.1007/s00145-020-09367-8
    145 rdf:type schema:MonetaryGrant
    146 sg:grant.3582257 http://pending.schema.org/fundedItem sg:pub.10.1007/s00145-020-09367-8
    147 rdf:type schema:MonetaryGrant
    148 sg:grant.3848304 http://pending.schema.org/fundedItem sg:pub.10.1007/s00145-020-09367-8
    149 rdf:type schema:MonetaryGrant
    150 sg:grant.3849556 http://pending.schema.org/fundedItem sg:pub.10.1007/s00145-020-09367-8
    151 rdf:type schema:MonetaryGrant
    152 sg:grant.3849724 http://pending.schema.org/fundedItem sg:pub.10.1007/s00145-020-09367-8
    153 rdf:type schema:MonetaryGrant
    154 sg:grant.3850679 http://pending.schema.org/fundedItem sg:pub.10.1007/s00145-020-09367-8
    155 rdf:type schema:MonetaryGrant
    156 sg:grant.7438402 http://pending.schema.org/fundedItem sg:pub.10.1007/s00145-020-09367-8
    157 rdf:type schema:MonetaryGrant
    158 sg:grant.7912009 http://pending.schema.org/fundedItem sg:pub.10.1007/s00145-020-09367-8
    159 rdf:type schema:MonetaryGrant
    160 sg:journal.1136278 schema:issn 0933-2790
    161 1432-1378
    162 schema:name Journal of Cryptology
    163 schema:publisher Springer Nature
    164 rdf:type schema:Periodical
    165 sg:person.012320111457.74 schema:affiliation grid-institutes:grid.12136.37
    166 schema:familyName Canetti
    167 schema:givenName Ran
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012320111457.74
    169 rdf:type schema:Person
    170 sg:person.013244656177.72 schema:affiliation grid-institutes:grid.63054.34
    171 schema:familyName Fuller
    172 schema:givenName Benjamin
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013244656177.72
    174 rdf:type schema:Person
    175 sg:person.013307226666.21 schema:affiliation grid-institutes:grid.189504.1
    176 schema:familyName Smith
    177 schema:givenName Adam
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013307226666.21
    179 rdf:type schema:Person
    180 sg:person.014073524511.68 schema:affiliation grid-institutes:grid.116068.8
    181 schema:familyName Paneth
    182 schema:givenName Omer
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014073524511.68
    184 rdf:type schema:Person
    185 sg:person.016627532062.10 schema:affiliation grid-institutes:grid.189504.1
    186 schema:familyName Reyzin
    187 schema:givenName Leonid
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016627532062.10
    189 rdf:type schema:Person
    190 sg:pub.10.1007/11426639_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047382454
    191 https://doi.org/10.1007/11426639_9
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/11535218_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010535182
    194 https://doi.org/10.1007/11535218_29
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/11894063_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005869106
    197 https://doi.org/10.1007/11894063_29
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/3-540-69053-0_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047413612
    200 https://doi.org/10.1007/3-540-69053-0_15
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/978-1-4471-0515-2_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043279260
    203 https://doi.org/10.1007/978-1-4471-0515-2_27
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/978-3-030-30215-3_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120756873
    206 https://doi.org/10.1007/978-3-030-30215-3_23
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/978-3-319-60080-2_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089967528
    209 https://doi.org/10.1007/978-3-319-60080-2_1
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/978-3-319-63697-9_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091024670
    212 https://doi.org/10.1007/978-3-319-63697-9_23
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/978-3-319-93638-3_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104575151
    215 https://doi.org/10.1007/978-3-319-93638-3_2
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/978-3-540-24676-3_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035756543
    218 https://doi.org/10.1007/978-3-540-24676-3_2
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/978-3-540-45146-4_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001240361
    221 https://doi.org/10.1007/978-3-540-45146-4_4
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/978-3-540-78967-3_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037449861
    224 https://doi.org/10.1007/978-3-540-78967-3_27
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/978-3-540-78967-3_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020737814
    227 https://doi.org/10.1007/978-3-540-78967-3_28
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/978-3-642-04138-9_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037474974
    230 https://doi.org/10.1007/978-3-642-04138-9_24
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/978-3-642-11145-7_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012296037
    233 https://doi.org/10.1007/978-3-642-11145-7_14
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/978-3-642-14623-7_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052251590
    236 https://doi.org/10.1007/978-3-642-14623-7_28
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/978-3-642-14623-7_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012218885
    239 https://doi.org/10.1007/978-3-642-14623-7_34
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/978-3-642-22670-0_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036241586
    242 https://doi.org/10.1007/978-3-642-22670-0_24
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/978-3-642-42033-7_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014500804
    245 https://doi.org/10.1007/978-3-642-42033-7_10
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/978-3-642-55220-5_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034736534
    248 https://doi.org/10.1007/978-3-642-55220-5_6
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1007/978-3-662-44381-1_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006934572
    251 https://doi.org/10.1007/978-3-662-44381-1_7
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1007/978-3-662-49890-3_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014328379
    254 https://doi.org/10.1007/978-3-662-49890-3_5
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1007/978-3-662-53887-6_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084920151
    257 https://doi.org/10.1007/978-3-662-53887-6_10
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1007/bfb0034847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006305048
    260 https://doi.org/10.1007/bfb0034847
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1007/bfb0052244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012602811
    263 https://doi.org/10.1007/bfb0052244
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1007/bfb0052255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033233326
    266 https://doi.org/10.1007/bfb0052255
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1007/s00453-016-0218-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006324643
    269 https://doi.org/10.1007/s00453-016-0218-8
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1007/s102070100006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008722744
    272 https://doi.org/10.1007/s102070100006
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1007/s10623-018-0459-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100618927
    275 https://doi.org/10.1007/s10623-018-0459-4
    276 rdf:type schema:CreativeWork
    277 grid-institutes:grid.116068.8 schema:alternateName Massachusetts Institute of Technology, Cambridge, USA
    278 schema:name Massachusetts Institute of Technology, Cambridge, USA
    279 rdf:type schema:Organization
    280 grid-institutes:grid.12136.37 schema:alternateName Tel Aviv University, Tel Aviv, Israel
    281 schema:name Boston University, Boston, USA
    282 Tel Aviv University, Tel Aviv, Israel
    283 rdf:type schema:Organization
    284 grid-institutes:grid.189504.1 schema:alternateName Boston University, Boston, USA
    285 schema:name Boston University, Boston, USA
    286 rdf:type schema:Organization
    287 grid-institutes:grid.63054.34 schema:alternateName University of Connecticut, Storrs, USA
    288 schema:name University of Connecticut, Storrs, USA
    289 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...