Efficient RSA Key Generation and Threshold Paillier in the Two-Party Setting View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-02-05

AUTHORS

Carmit Hazay, Gert Læssøe Mikkelsen, Tal Rabin, Tomas Toft, Angelo Agatino Nicolosi

ABSTRACT

The problem of generating an RSA composite in a distributed manner without leaking its factorization is particularly challenging and useful in many cryptographic protocols. Our first contribution is the first non-generic fully simulatable protocol for distributively generating an RSA composite with security against malicious behavior. Our second contribution is a complete Paillier (in: EUROCRYPT, pp 223–238, 1999) threshold encryption scheme in the two-party setting with security against malicious attacks. We further describe how to extend our protocols to the multiparty setting with dishonest majority. Our RSA key generation protocol is comprised of the following subprotocols: (i) a distributed protocol for generation of an RSA composite and (ii) a biprimality test for verifying the validity of the generated composite. Our Paillier threshold encryption scheme uses the RSA composite for the public key and is comprised of the following subprotocols: (i) a distributed generation of the corresponding secret key shares and (ii) a distributed decryption protocol for decrypting according to Paillier. More... »

PAGES

265-323

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00145-017-9275-7

DOI

http://dx.doi.org/10.1007/s00145-017-9275-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100836157


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel", 
          "id": "http://www.grid.ac/institutes/grid.22098.31", 
          "name": [
            "Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hazay", 
        "givenName": "Carmit", 
        "id": "sg:person.07347002665.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07347002665.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Alexandra Institute, Aarhus, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.423959.0", 
          "name": [
            "The Alexandra Institute, Aarhus, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mikkelsen", 
        "givenName": "Gert L\u00e6ss\u00f8e", 
        "id": "sg:person.016435223651.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016435223651.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM T.J. Watson Research Center, Yorktown Heights, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T.J. Watson Research Center, Yorktown Heights, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rabin", 
        "givenName": "Tal", 
        "id": "sg:person.015473523512.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015473523512.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Partisia, Aarhus N, Denmark", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Partisia, Aarhus N, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toft", 
        "givenName": "Tomas", 
        "id": "sg:person.015535116101.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015535116101.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "YanchWare, Br\u00e6dstrup, Denmark", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "YanchWare, Br\u00e6dstrup, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nicolosi", 
        "givenName": "Angelo Agatino", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s001459910006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010883744", 
          "https://doi.org/10.1007/s001459910006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45539-6_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019622466", 
          "https://doi.org/10.1007/3-540-45539-6_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0851-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018857135", 
          "https://doi.org/10.1007/978-1-4612-0851-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-09494-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022625712", 
          "https://doi.org/10.1007/978-0-387-09494-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001459910011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028805095", 
          "https://doi.org/10.1007/s001459910011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45472-1_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044985982", 
          "https://doi.org/10.1007/3-540-45472-1_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45708-9_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024200446", 
          "https://doi.org/10.1007/3-540-45708-9_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-49649-1_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012748271", 
          "https://doi.org/10.1007/3-540-49649-1_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03642-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011913013", 
          "https://doi.org/10.1007/978-3-662-03642-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001459900030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004544479", 
          "https://doi.org/10.1007/s001459900030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00145-006-0347-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000307063", 
          "https://doi.org/10.1007/s00145-006-0347-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00196725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043691009", 
          "https://doi.org/10.1007/bf00196725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02351717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001094212", 
          "https://doi.org/10.1007/bf02351717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-14303-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046207611", 
          "https://doi.org/10.1007/978-3-642-14303-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-0310-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012143136", 
          "https://doi.org/10.1007/978-1-4684-0310-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-02-05", 
    "datePublishedReg": "2018-02-05", 
    "description": "The problem of generating an RSA composite in a distributed manner without leaking its factorization is particularly challenging and useful in many cryptographic protocols. Our first contribution is the first non-generic fully simulatable protocol for distributively generating an RSA composite with security against malicious behavior. Our second contribution is a complete Paillier (in: EUROCRYPT, pp 223\u2013238, 1999) threshold encryption scheme in the two-party setting with security against malicious attacks. We further describe how to extend our protocols to the multiparty setting with dishonest majority. Our RSA key generation protocol is comprised of the following subprotocols: (i) a distributed protocol for generation of an RSA composite and (ii) a biprimality test for verifying the validity of the generated composite. Our Paillier threshold encryption scheme uses the RSA composite for the public key and is comprised of the following subprotocols: (i) a distributed generation of the corresponding secret key shares and (ii) a distributed decryption protocol for decrypting according to Paillier.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00145-017-9275-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136278", 
        "issn": [
          "0933-2790", 
          "1432-1378"
        ], 
        "name": "Journal of Cryptology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "keywords": [
      "threshold encryption scheme", 
      "two-party setting", 
      "encryption scheme", 
      "secret key shares", 
      "RSA key generation", 
      "key generation protocol", 
      "malicious behavior", 
      "malicious attacks", 
      "cryptographic protocols", 
      "decryption protocol", 
      "key shares", 
      "public key", 
      "dishonest majority", 
      "key generation", 
      "second contribution", 
      "generation protocol", 
      "Paillier", 
      "first contribution", 
      "security", 
      "subprotocol", 
      "protocol", 
      "scheme", 
      "Distributed Generation", 
      "multiparty", 
      "attacks", 
      "factorization", 
      "key", 
      "generation", 
      "setting", 
      "contribution", 
      "manner", 
      "share", 
      "validity", 
      "behavior", 
      "test", 
      "majority", 
      "problem", 
      "composites"
    ], 
    "name": "Efficient RSA Key Generation and Threshold Paillier in the Two-Party Setting", 
    "pagination": "265-323", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100836157"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00145-017-9275-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00145-017-9275-7", 
      "https://app.dimensions.ai/details/publication/pub.1100836157"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_754.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00145-017-9275-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00145-017-9275-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00145-017-9275-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00145-017-9275-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00145-017-9275-7'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      22 PREDICATES      78 URIs      55 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00145-017-9275-7 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author N435c5ed71b3d4d5fac57a2534bf007bd
4 schema:citation sg:pub.10.1007/3-540-45472-1_7
5 sg:pub.10.1007/3-540-45539-6_31
6 sg:pub.10.1007/3-540-45708-9_27
7 sg:pub.10.1007/3-540-49649-1_2
8 sg:pub.10.1007/978-0-387-09494-6
9 sg:pub.10.1007/978-1-4612-0851-8
10 sg:pub.10.1007/978-1-4684-0310-7
11 sg:pub.10.1007/978-3-642-14303-8
12 sg:pub.10.1007/978-3-662-03642-6
13 sg:pub.10.1007/bf00196725
14 sg:pub.10.1007/bf02351717
15 sg:pub.10.1007/s00145-006-0347-3
16 sg:pub.10.1007/s001459900030
17 sg:pub.10.1007/s001459910006
18 sg:pub.10.1007/s001459910011
19 schema:datePublished 2018-02-05
20 schema:datePublishedReg 2018-02-05
21 schema:description The problem of generating an RSA composite in a distributed manner without leaking its factorization is particularly challenging and useful in many cryptographic protocols. Our first contribution is the first non-generic fully simulatable protocol for distributively generating an RSA composite with security against malicious behavior. Our second contribution is a complete Paillier (in: EUROCRYPT, pp 223–238, 1999) threshold encryption scheme in the two-party setting with security against malicious attacks. We further describe how to extend our protocols to the multiparty setting with dishonest majority. Our RSA key generation protocol is comprised of the following subprotocols: (i) a distributed protocol for generation of an RSA composite and (ii) a biprimality test for verifying the validity of the generated composite. Our Paillier threshold encryption scheme uses the RSA composite for the public key and is comprised of the following subprotocols: (i) a distributed generation of the corresponding secret key shares and (ii) a distributed decryption protocol for decrypting according to Paillier.
22 schema:genre article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N17415679413c459ca2010894d5d075b0
26 N6b3a44c5825d4d8eb9a07f7b4369151d
27 sg:journal.1136278
28 schema:keywords Distributed Generation
29 Paillier
30 RSA key generation
31 attacks
32 behavior
33 composites
34 contribution
35 cryptographic protocols
36 decryption protocol
37 dishonest majority
38 encryption scheme
39 factorization
40 first contribution
41 generation
42 generation protocol
43 key
44 key generation
45 key generation protocol
46 key shares
47 majority
48 malicious attacks
49 malicious behavior
50 manner
51 multiparty
52 problem
53 protocol
54 public key
55 scheme
56 second contribution
57 secret key shares
58 security
59 setting
60 share
61 subprotocol
62 test
63 threshold encryption scheme
64 two-party setting
65 validity
66 schema:name Efficient RSA Key Generation and Threshold Paillier in the Two-Party Setting
67 schema:pagination 265-323
68 schema:productId N3866e6fc1fa44eb0b31abfe32bb9579d
69 Ncdd19b08f2fb419199a71f3ea40f6709
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100836157
71 https://doi.org/10.1007/s00145-017-9275-7
72 schema:sdDatePublished 2022-05-20T07:33
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N68a369c524af414f9820ea567a21f3af
75 schema:url https://doi.org/10.1007/s00145-017-9275-7
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N17415679413c459ca2010894d5d075b0 schema:volumeNumber 32
80 rdf:type schema:PublicationVolume
81 N20742c33c2584a58ae62e3e7f4fd0f65 rdf:first sg:person.016435223651.35
82 rdf:rest N676b60424d70423e87c814289c1c136a
83 N3866e6fc1fa44eb0b31abfe32bb9579d schema:name doi
84 schema:value 10.1007/s00145-017-9275-7
85 rdf:type schema:PropertyValue
86 N435c5ed71b3d4d5fac57a2534bf007bd rdf:first sg:person.07347002665.54
87 rdf:rest N20742c33c2584a58ae62e3e7f4fd0f65
88 N676b60424d70423e87c814289c1c136a rdf:first sg:person.015473523512.58
89 rdf:rest Nc21dcbc98b594790823d3d4876f2a00b
90 N68a369c524af414f9820ea567a21f3af schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N6b3a44c5825d4d8eb9a07f7b4369151d schema:issueNumber 2
93 rdf:type schema:PublicationIssue
94 N7135fb5860be4a2583202f94d29e35ce rdf:first Nb8deb902c46240c0a9c53abc338e076a
95 rdf:rest rdf:nil
96 Nb8deb902c46240c0a9c53abc338e076a schema:affiliation grid-institutes:None
97 schema:familyName Nicolosi
98 schema:givenName Angelo Agatino
99 rdf:type schema:Person
100 Nc21dcbc98b594790823d3d4876f2a00b rdf:first sg:person.015535116101.78
101 rdf:rest N7135fb5860be4a2583202f94d29e35ce
102 Ncdd19b08f2fb419199a71f3ea40f6709 schema:name dimensions_id
103 schema:value pub.1100836157
104 rdf:type schema:PropertyValue
105 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
106 schema:name Information and Computing Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
109 schema:name Data Format
110 rdf:type schema:DefinedTerm
111 sg:journal.1136278 schema:issn 0933-2790
112 1432-1378
113 schema:name Journal of Cryptology
114 schema:publisher Springer Nature
115 rdf:type schema:Periodical
116 sg:person.015473523512.58 schema:affiliation grid-institutes:grid.481554.9
117 schema:familyName Rabin
118 schema:givenName Tal
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015473523512.58
120 rdf:type schema:Person
121 sg:person.015535116101.78 schema:affiliation grid-institutes:None
122 schema:familyName Toft
123 schema:givenName Tomas
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015535116101.78
125 rdf:type schema:Person
126 sg:person.016435223651.35 schema:affiliation grid-institutes:grid.423959.0
127 schema:familyName Mikkelsen
128 schema:givenName Gert Læssøe
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016435223651.35
130 rdf:type schema:Person
131 sg:person.07347002665.54 schema:affiliation grid-institutes:grid.22098.31
132 schema:familyName Hazay
133 schema:givenName Carmit
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07347002665.54
135 rdf:type schema:Person
136 sg:pub.10.1007/3-540-45472-1_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044985982
137 https://doi.org/10.1007/3-540-45472-1_7
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/3-540-45539-6_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019622466
140 https://doi.org/10.1007/3-540-45539-6_31
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/3-540-45708-9_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024200446
143 https://doi.org/10.1007/3-540-45708-9_27
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/3-540-49649-1_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012748271
146 https://doi.org/10.1007/3-540-49649-1_2
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/978-0-387-09494-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022625712
149 https://doi.org/10.1007/978-0-387-09494-6
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/978-1-4612-0851-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018857135
152 https://doi.org/10.1007/978-1-4612-0851-8
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/978-1-4684-0310-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012143136
155 https://doi.org/10.1007/978-1-4684-0310-7
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/978-3-642-14303-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046207611
158 https://doi.org/10.1007/978-3-642-14303-8
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/978-3-662-03642-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011913013
161 https://doi.org/10.1007/978-3-662-03642-6
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/bf00196725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043691009
164 https://doi.org/10.1007/bf00196725
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/bf02351717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001094212
167 https://doi.org/10.1007/bf02351717
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s00145-006-0347-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000307063
170 https://doi.org/10.1007/s00145-006-0347-3
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s001459900030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004544479
173 https://doi.org/10.1007/s001459900030
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s001459910006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010883744
176 https://doi.org/10.1007/s001459910006
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s001459910011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028805095
179 https://doi.org/10.1007/s001459910011
180 rdf:type schema:CreativeWork
181 grid-institutes:None schema:alternateName Partisia, Aarhus N, Denmark
182 YanchWare, Brædstrup, Denmark
183 schema:name Partisia, Aarhus N, Denmark
184 YanchWare, Brædstrup, Denmark
185 rdf:type schema:Organization
186 grid-institutes:grid.22098.31 schema:alternateName Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
187 schema:name Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
188 rdf:type schema:Organization
189 grid-institutes:grid.423959.0 schema:alternateName The Alexandra Institute, Aarhus, Denmark
190 schema:name The Alexandra Institute, Aarhus, Denmark
191 rdf:type schema:Organization
192 grid-institutes:grid.481554.9 schema:alternateName IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
193 schema:name IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...