Efficient Asynchronous Verifiable Secret Sharing and Multiparty Computation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-01

AUTHORS

Arpita Patra, Ashish Choudhury, C. Pandu Rangan

ABSTRACT

Secure Multi-Party Computation (MPC) providing information-theoretic security allows a set of n parties to securely compute an agreed function over a finite field, even if t parties are under the control of a computationally unbounded active adversary. Asynchronous MPC (AMPC) is an important variant of MPC, which works over an asynchronous network. It is well known that perfect AMPC is possible if and only if t More... »

PAGES

49-109

References to SciGraph publications

  • 2012. Near-Linear Unconditionally-Secure Multiparty Computation with a Dishonest Minority in ADVANCES IN CRYPTOLOGY – CRYPTO 2012
  • 2009. Efficient Secure Multiparty Computation Protocol in Asynchronous Network in ADVANCES IN INFORMATION SECURITY AND ASSURANCE
  • 2000. Efficient Asynchronous Secure Multiparty Distributed Computation in PROGRESS IN CRYPTOLOGY —INDOCRYPT 2000
  • 2001-05-18. Efficient Multiparty Protocols Using Circuit Randomization in ADVANCES IN CRYPTOLOGY — CRYPTO ’91
  • 2000. Efficient Secure Multi-party Computation in ADVANCES IN CRYPTOLOGY — ASIACRYPT 2000
  • 2008. Perfectly-Secure MPC with Linear Communication Complexity in THEORY OF CRYPTOGRAPHY
  • 1999-04-15. Efficient Multiparty Computations Secure Against an Adaptive Adversary in ADVANCES IN CRYPTOLOGY — EUROCRYPT ’99
  • 2009-02. Batch secret sharing for secure multi-party computation in asynchronous network in JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (SCIENCE)
  • 2008. Improving the Round Complexity of VSS in Point-to-Point Networks in AUTOMATA, LANGUAGES AND PROGRAMMING
  • 2007. Simple and Efficient Perfectly-Secure Asynchronous MPC in ADVANCES IN CRYPTOLOGY – ASIACRYPT 2007
  • 2013. Asynchronous Multiparty Computation with Linear Communication Complexity in DISTRIBUTED COMPUTING
  • 2003. Trading Players for Efficiency in Unconditional Multiparty Computation in SECURITY IN COMMUNICATION NETWORKS
  • 2007. Scalable and Unconditionally Secure Multiparty Computation in ADVANCES IN CRYPTOLOGY - CRYPTO 2007
  • 2006. Scalable Secure Multiparty Computation in ADVANCES IN CRYPTOLOGY - CRYPTO 2006
  • 2009. The Round Complexity of Verifiable Secret Sharing Revisited in ADVANCES IN CRYPTOLOGY - CRYPTO 2009
  • 2009. Asynchronous Multiparty Computation: Theory and Implementation in PUBLIC KEY CRYPTOGRAPHY – PKC 2009
  • 1991-01. Secure multiparty protocols and zero-knowledge proof systems tolerating a faulty minority in JOURNAL OF CRYPTOLOGY
  • 2008. Round Efficient Unconditionally Secure Multiparty Computation Protocol in PROGRESS IN CRYPTOLOGY - INDOCRYPT 2008
  • 2006. On Expected Constant-Round Protocols for Byzantine Agreement in ADVANCES IN CRYPTOLOGY - CRYPTO 2006
  • 2010. Communication Efficient Perfectly Secure VSS and MPC in Asynchronous Networks with Optimal Resilience in PROGRESS IN CRYPTOLOGY – AFRICACRYPT 2010
  • 2006. Round-Optimal and Efficient Verifiable Secret Sharing in THEORY OF CRYPTOGRAPHY
  • 2006. Efficient Multi-party Computation with Dispute Control in THEORY OF CRYPTOGRAPHY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00145-013-9172-7

    DOI

    http://dx.doi.org/10.1007/s00145-013-9172-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002166925


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Data Format", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Bristol", 
              "id": "https://www.grid.ac/institutes/grid.5337.2", 
              "name": [
                "Department of Computer Science, University of Bristol, Bristol, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Patra", 
            "givenName": "Arpita", 
            "id": "sg:person.016570701367.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016570701367.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Bristol", 
              "id": "https://www.grid.ac/institutes/grid.5337.2", 
              "name": [
                "Department of Computer Science, University of Bristol, Bristol, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Choudhury", 
            "givenName": "Ashish", 
            "id": "sg:person.011205617357.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011205617357.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indian Institute of Technology Madras", 
              "id": "https://www.grid.ac/institutes/grid.417969.4", 
              "name": [
                "Department of Computer Science and Engineering, Indian Institute of Technology Madras, Madras, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pandu Rangan", 
            "givenName": "C.", 
            "id": "sg:person.016366027737.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016366027737.61"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-41527-2_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001290446", 
              "https://doi.org/10.1007/978-3-642-41527-2_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44495-5_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001636011", 
              "https://doi.org/10.1007/3-540-44495-5_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/197917.198088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001729303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-03356-8_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002582525", 
              "https://doi.org/10.1007/978-3-642-03356-8_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46766-1_34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002631468", 
              "https://doi.org/10.1007/3-540-46766-1_34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46766-1_34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002631468", 
              "https://doi.org/10.1007/3-540-46766-1_34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-00468-1_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003340150", 
              "https://doi.org/10.1007/978-3-642-00468-1_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74143-5_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003817266", 
              "https://doi.org/10.1007/978-3-540-74143-5_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74143-5_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003817266", 
              "https://doi.org/10.1007/978-3-540-74143-5_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00196771", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005303988", 
              "https://doi.org/10.1007/bf00196771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/138027.138036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005482433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/195613.195621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005872861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/73007.73014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008903577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11681878_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012831785", 
              "https://doi.org/10.1007/11681878_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11681878_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012831785", 
              "https://doi.org/10.1007/11681878_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11818175_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014455690", 
              "https://doi.org/10.1007/11818175_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11818175_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014455690", 
              "https://doi.org/10.1007/11818175_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11681878_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016303645", 
              "https://doi.org/10.1007/11681878_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11681878_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016303645", 
              "https://doi.org/10.1007/11681878_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-89754-5_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021130335", 
              "https://doi.org/10.1007/978-3-540-89754-5_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-89754-5_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021130335", 
              "https://doi.org/10.1007/978-3-540-89754-5_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/800222.806743", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022212275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36413-7_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024692189", 
              "https://doi.org/10.1007/3-540-36413-7_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12204-009-0112-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026465808", 
              "https://doi.org/10.1007/s12204-009-0112-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/167088.167109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027848734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1400751.1400804", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030287032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-70583-3_41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031293658", 
              "https://doi.org/10.1007/978-3-540-70583-3_41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44448-3_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035215851", 
              "https://doi.org/10.1007/3-540-44448-3_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/359168.359176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036015253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-76900-2_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036906690", 
              "https://doi.org/10.1007/978-3-540-76900-2_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-76900-2_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036906690", 
              "https://doi.org/10.1007/978-3-540-76900-2_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-32009-5_39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036941919", 
              "https://doi.org/10.1007/978-3-642-32009-5_39"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48910-x_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041055798", 
              "https://doi.org/10.1007/3-540-48910-x_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48910-x_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041055798", 
              "https://doi.org/10.1007/3-540-48910-x_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/129712.129780", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042196657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/62212.62213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044033157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/167088.167105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044099843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-02617-1_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045335534", 
              "https://doi.org/10.1007/978-3-642-02617-1_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-02617-1_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045335534", 
              "https://doi.org/10.1007/978-3-642-02617-1_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11818175_30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047952596", 
              "https://doi.org/10.1007/11818175_30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11818175_30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047952596", 
              "https://doi.org/10.1007/11818175_30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/380752.380853", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048685744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-12678-9_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049666190", 
              "https://doi.org/10.1007/978-3-642-12678-9_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-12678-9_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049666190", 
              "https://doi.org/10.1007/978-3-642-12678-9_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-78524-8_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053389593", 
              "https://doi.org/10.1007/978-3-540-78524-8_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-78524-8_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053389593", 
              "https://doi.org/10.1007/978-3-540-78524-8_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/18.476316", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061099776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0217014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062842033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sfcs.1982.38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086213882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sfcs.1985.64", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086253451"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-01", 
        "datePublishedReg": "2015-01-01", 
        "description": "Secure Multi-Party Computation (MPC) providing information-theoretic security allows a set of n parties to securely compute an agreed function over a finite field, even if t parties are under the control of a computationally unbounded active adversary. Asynchronous MPC (AMPC) is an important variant of MPC, which works over an asynchronous network. It is well known that perfect AMPC is possible if and only if t
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00145-013-9172-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00145-013-9172-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00145-013-9172-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00145-013-9172-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    218 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00145-013-9172-7 schema:about anzsrc-for:08
    2 anzsrc-for:0804
    3 schema:author N80560f6e4cde4909b77609e0a00c4957
    4 schema:citation sg:pub.10.1007/11681878_16
    5 sg:pub.10.1007/11681878_17
    6 sg:pub.10.1007/11818175_27
    7 sg:pub.10.1007/11818175_30
    8 sg:pub.10.1007/3-540-36413-7_25
    9 sg:pub.10.1007/3-540-44448-3_12
    10 sg:pub.10.1007/3-540-44495-5_11
    11 sg:pub.10.1007/3-540-46766-1_34
    12 sg:pub.10.1007/3-540-48910-x_22
    13 sg:pub.10.1007/978-3-540-70583-3_41
    14 sg:pub.10.1007/978-3-540-74143-5_32
    15 sg:pub.10.1007/978-3-540-76900-2_23
    16 sg:pub.10.1007/978-3-540-78524-8_13
    17 sg:pub.10.1007/978-3-540-89754-5_15
    18 sg:pub.10.1007/978-3-642-00468-1_10
    19 sg:pub.10.1007/978-3-642-02617-1_16
    20 sg:pub.10.1007/978-3-642-03356-8_29
    21 sg:pub.10.1007/978-3-642-12678-9_12
    22 sg:pub.10.1007/978-3-642-32009-5_39
    23 sg:pub.10.1007/978-3-642-41527-2_27
    24 sg:pub.10.1007/bf00196771
    25 sg:pub.10.1007/s12204-009-0112-5
    26 https://doi.org/10.1109/18.476316
    27 https://doi.org/10.1109/sfcs.1982.38
    28 https://doi.org/10.1109/sfcs.1985.64
    29 https://doi.org/10.1137/0217014
    30 https://doi.org/10.1145/129712.129780
    31 https://doi.org/10.1145/138027.138036
    32 https://doi.org/10.1145/1400751.1400804
    33 https://doi.org/10.1145/167088.167105
    34 https://doi.org/10.1145/167088.167109
    35 https://doi.org/10.1145/195613.195621
    36 https://doi.org/10.1145/197917.198088
    37 https://doi.org/10.1145/359168.359176
    38 https://doi.org/10.1145/380752.380853
    39 https://doi.org/10.1145/62212.62213
    40 https://doi.org/10.1145/73007.73014
    41 https://doi.org/10.1145/800222.806743
    42 schema:datePublished 2015-01
    43 schema:datePublishedReg 2015-01-01
    44 schema:description Secure Multi-Party Computation (MPC) providing information-theoretic security allows a set of n parties to securely compute an agreed function over a finite field, even if t parties are under the control of a computationally unbounded active adversary. Asynchronous MPC (AMPC) is an important variant of MPC, which works over an asynchronous network. It is well known that perfect AMPC is possible if and only if t<n/4, while statistical AMPC is possible if and only if t<n/3. In this paper, we study the communication complexity of AMPC protocols (both statistical and perfect) designed with exactly n=4t+1 parties. Our major contributions in this paper are as follows:Asynchronous Verifiable Secret Sharing (AVSS) is one of the main building blocks for AMPC protocols. In this paper, we design two AVSS schemes with 4t+1 parties: the first one is statistically-secure and has non-optimal resilience, while the second one is perfectly-secure and has optimal resilience. Both these schemes achieve a common interesting property, which was not achieved by the previous schemes. Specifically, our AVSS schemes allow to share a secret with the degree of sharing at most d, where t≤d≤2t. In contrast, the existing AVSS schemes allow the degree of sharing to be at most t. The new property of our AVSS schemes simplifies the degree-reduction step for the evaluation of multiplication gates in an AMPC protocol.Using our statistical AVSS scheme, we design a statistical AMPC protocol with n=4t+1 which requires an amortized communication of field elements per multiplication gate. Though this protocol has non-optimal resilience, it significantly improves the communication complexity of the existing statistical AMPC protocols.We then present a perfect AMPC protocol with n=4t+1 (using our perfect AVSS scheme), which also incurs an amortized communication of field elements per multiplication gate. This protocol improves on our statistical AMPC protocol as it has optimal resilience. This is the most communication efficient, optimally-resilient, perfect AMPC protocol. Asynchronous Verifiable Secret Sharing (AVSS) is one of the main building blocks for AMPC protocols. In this paper, we design two AVSS schemes with 4t+1 parties: the first one is statistically-secure and has non-optimal resilience, while the second one is perfectly-secure and has optimal resilience. Both these schemes achieve a common interesting property, which was not achieved by the previous schemes. Specifically, our AVSS schemes allow to share a secret with the degree of sharing at most d, where t≤d≤2t. In contrast, the existing AVSS schemes allow the degree of sharing to be at most t. The new property of our AVSS schemes simplifies the degree-reduction step for the evaluation of multiplication gates in an AMPC protocol. Using our statistical AVSS scheme, we design a statistical AMPC protocol with n=4t+1 which requires an amortized communication of field elements per multiplication gate. Though this protocol has non-optimal resilience, it significantly improves the communication complexity of the existing statistical AMPC protocols. We then present a perfect AMPC protocol with n=4t+1 (using our perfect AVSS scheme), which also incurs an amortized communication of field elements per multiplication gate. This protocol improves on our statistical AMPC protocol as it has optimal resilience. This is the most communication efficient, optimally-resilient, perfect AMPC protocol.
    45 schema:genre research_article
    46 schema:inLanguage en
    47 schema:isAccessibleForFree false
    48 schema:isPartOf N00187a4db6024ba39c80c3ea98290ce9
    49 N18e44b2000e74bec8b4459c56601bf67
    50 sg:journal.1136278
    51 schema:name Efficient Asynchronous Verifiable Secret Sharing and Multiparty Computation
    52 schema:pagination 49-109
    53 schema:productId N12edf7992fb24eaf9277cb630a6a903d
    54 N5e7fd27aacdc4e32924123a6594f3333
    55 Nb4a75c3f85d44400859675cb72490da0
    56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002166925
    57 https://doi.org/10.1007/s00145-013-9172-7
    58 schema:sdDatePublished 2019-04-10T19:56
    59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    60 schema:sdPublisher N136309bef23c4632aa33f0d661e5fe2c
    61 schema:url http://link.springer.com/10.1007%2Fs00145-013-9172-7
    62 sgo:license sg:explorer/license/
    63 sgo:sdDataset articles
    64 rdf:type schema:ScholarlyArticle
    65 N00187a4db6024ba39c80c3ea98290ce9 schema:volumeNumber 28
    66 rdf:type schema:PublicationVolume
    67 N12edf7992fb24eaf9277cb630a6a903d schema:name dimensions_id
    68 schema:value pub.1002166925
    69 rdf:type schema:PropertyValue
    70 N136309bef23c4632aa33f0d661e5fe2c schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 N18e44b2000e74bec8b4459c56601bf67 schema:issueNumber 1
    73 rdf:type schema:PublicationIssue
    74 N5e7fd27aacdc4e32924123a6594f3333 schema:name readcube_id
    75 schema:value 0a51797d6b07b919526ad07c7b8e35eb561b939641b411dd7a23b8d2c19c305f
    76 rdf:type schema:PropertyValue
    77 N80560f6e4cde4909b77609e0a00c4957 rdf:first sg:person.016570701367.19
    78 rdf:rest Nbf3bd7672c624fa7bf8479536d4d15c1
    79 N9aebc9cc991246d691bf82778c3a02e8 rdf:first sg:person.016366027737.61
    80 rdf:rest rdf:nil
    81 Nb4a75c3f85d44400859675cb72490da0 schema:name doi
    82 schema:value 10.1007/s00145-013-9172-7
    83 rdf:type schema:PropertyValue
    84 Nbf3bd7672c624fa7bf8479536d4d15c1 rdf:first sg:person.011205617357.10
    85 rdf:rest N9aebc9cc991246d691bf82778c3a02e8
    86 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Information and Computing Sciences
    88 rdf:type schema:DefinedTerm
    89 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Data Format
    91 rdf:type schema:DefinedTerm
    92 sg:grant.2782093 http://pending.schema.org/fundedItem sg:pub.10.1007/s00145-013-9172-7
    93 rdf:type schema:MonetaryGrant
    94 sg:grant.3782002 http://pending.schema.org/fundedItem sg:pub.10.1007/s00145-013-9172-7
    95 rdf:type schema:MonetaryGrant
    96 sg:journal.1136278 schema:issn 0933-2790
    97 1432-1378
    98 schema:name Journal of Cryptology
    99 rdf:type schema:Periodical
    100 sg:person.011205617357.10 schema:affiliation https://www.grid.ac/institutes/grid.5337.2
    101 schema:familyName Choudhury
    102 schema:givenName Ashish
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011205617357.10
    104 rdf:type schema:Person
    105 sg:person.016366027737.61 schema:affiliation https://www.grid.ac/institutes/grid.417969.4
    106 schema:familyName Pandu Rangan
    107 schema:givenName C.
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016366027737.61
    109 rdf:type schema:Person
    110 sg:person.016570701367.19 schema:affiliation https://www.grid.ac/institutes/grid.5337.2
    111 schema:familyName Patra
    112 schema:givenName Arpita
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016570701367.19
    114 rdf:type schema:Person
    115 sg:pub.10.1007/11681878_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016303645
    116 https://doi.org/10.1007/11681878_16
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/11681878_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012831785
    119 https://doi.org/10.1007/11681878_17
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/11818175_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014455690
    122 https://doi.org/10.1007/11818175_27
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/11818175_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047952596
    125 https://doi.org/10.1007/11818175_30
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/3-540-36413-7_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024692189
    128 https://doi.org/10.1007/3-540-36413-7_25
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/3-540-44448-3_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035215851
    131 https://doi.org/10.1007/3-540-44448-3_12
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/3-540-44495-5_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001636011
    134 https://doi.org/10.1007/3-540-44495-5_11
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/3-540-46766-1_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002631468
    137 https://doi.org/10.1007/3-540-46766-1_34
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/3-540-48910-x_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041055798
    140 https://doi.org/10.1007/3-540-48910-x_22
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/978-3-540-70583-3_41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031293658
    143 https://doi.org/10.1007/978-3-540-70583-3_41
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/978-3-540-74143-5_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003817266
    146 https://doi.org/10.1007/978-3-540-74143-5_32
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/978-3-540-76900-2_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036906690
    149 https://doi.org/10.1007/978-3-540-76900-2_23
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/978-3-540-78524-8_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053389593
    152 https://doi.org/10.1007/978-3-540-78524-8_13
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/978-3-540-89754-5_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021130335
    155 https://doi.org/10.1007/978-3-540-89754-5_15
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/978-3-642-00468-1_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003340150
    158 https://doi.org/10.1007/978-3-642-00468-1_10
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/978-3-642-02617-1_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045335534
    161 https://doi.org/10.1007/978-3-642-02617-1_16
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/978-3-642-03356-8_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002582525
    164 https://doi.org/10.1007/978-3-642-03356-8_29
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/978-3-642-12678-9_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049666190
    167 https://doi.org/10.1007/978-3-642-12678-9_12
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/978-3-642-32009-5_39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036941919
    170 https://doi.org/10.1007/978-3-642-32009-5_39
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/978-3-642-41527-2_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001290446
    173 https://doi.org/10.1007/978-3-642-41527-2_27
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/bf00196771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005303988
    176 https://doi.org/10.1007/bf00196771
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s12204-009-0112-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026465808
    179 https://doi.org/10.1007/s12204-009-0112-5
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1109/18.476316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061099776
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1109/sfcs.1982.38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086213882
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1109/sfcs.1985.64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086253451
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1137/0217014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062842033
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1145/129712.129780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042196657
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1145/138027.138036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005482433
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1145/1400751.1400804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030287032
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1145/167088.167105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044099843
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1145/167088.167109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027848734
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1145/195613.195621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005872861
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1145/197917.198088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001729303
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1145/359168.359176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036015253
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1145/380752.380853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048685744
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1145/62212.62213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044033157
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1145/73007.73014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008903577
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1145/800222.806743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022212275
    212 rdf:type schema:CreativeWork
    213 https://www.grid.ac/institutes/grid.417969.4 schema:alternateName Indian Institute of Technology Madras
    214 schema:name Department of Computer Science and Engineering, Indian Institute of Technology Madras, Madras, India
    215 rdf:type schema:Organization
    216 https://www.grid.ac/institutes/grid.5337.2 schema:alternateName University of Bristol
    217 schema:name Department of Computer Science, University of Bristol, Bristol, UK
    218 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...