An automatic assessment scheme for steel quality inspection View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2000-10

AUTHORS

Klaus Wiltschi, Axel Pinz, Tony Lindeberg

ABSTRACT

This paper presents an automatic system for steel quality assessment, by measuring textural properties of carbide distributions. In current steel inspection, specially etched and polished steel specimen surfaces are classified manually under a light microscope, by comparisons with a standard chart. This procedure is basically two-dimensional, reflecting the size of the carbide agglomerations and their directional distribution. To capture these textural properties in terms of image fea tures, we first apply a rich set of image-processing operations, including mathematical morphology, multi-channel Gabor filtering, and the computation of texture measures with automatic scale selection in linear scale-space. Then, a feature selector is applied to a 40-dimensional feature space, and a classification scheme is defined, which on a sample set of more than 400 images has classification performance values comparable to those of human metallographers. Finally, a fully automatic inspection system is designed, which actively selects the most salient carbide structure on the specimen surface for subsequent classification. The feasibility of the overall approach for future use in the production process is demonstrated by a prototype system. It is also shown how the presented classification scheme allows for the definition of a new reference chart in terms of quantitative measures. More... »

PAGES

113-128

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s001380050130

DOI

http://dx.doi.org/10.1007/s001380050130

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016221386


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute of Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16, 8010 Graz, Austria; e-mail: wiltschi@icg.tu-graz.ac.at, http://www.icg.tu-graz.ac.at, AT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wiltschi", 
        "givenName": "Klaus", 
        "id": "sg:person.014507651235.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014507651235.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute of Electrical Measurement and Measurement Signal Processing, Graz University of Technology, Kopernikusgasse 24, 8010 Graz, Austria; e-mail: pinz@emt.tu-graz.ac.at, http://www.emt.tu-graz.ac.at~pinz, AT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pinz", 
        "givenName": "Axel", 
        "id": "sg:person.012033065653.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012033065653.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5037.1", 
          "name": [
            "Computational Vision and Active Perception Laboratory, Department of Numerical Analysis and Computing Science, KTH, 100 44 Stockholm, Sweden; e-mail: tony@nada.kth.se, http://www.nada.kth/~tony, SE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lindeberg", 
        "givenName": "Tony", 
        "id": "sg:person.015666316421.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015666316421.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0734-189x(83)90094-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046982390"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-10", 
    "datePublishedReg": "2000-10-01", 
    "description": "This paper presents an automatic system for steel quality assessment, by measuring textural properties of carbide distributions. In current steel inspection, specially etched and polished steel specimen surfaces are classified manually under a light microscope, by comparisons with a standard chart. This procedure is basically two-dimensional, reflecting the size of the carbide agglomerations and their directional distribution. To capture these textural properties in terms of image fea tures, we first apply a rich set of image-processing operations, including mathematical morphology, multi-channel Gabor filtering, and the computation of texture measures with automatic scale selection in linear scale-space. Then, a feature selector is applied to a 40-dimensional feature space, and a classification scheme is defined, which on a sample set of more than 400 images has classification performance values comparable to those of human metallographers. Finally, a fully automatic inspection system is designed, which actively selects the most salient carbide structure on the specimen surface for subsequent classification. The feasibility of the overall approach for future use in the production process is demonstrated by a prototype system. It is also shown how the presented classification scheme allows for the definition of a new reference chart in terms of quantitative measures.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s001380050130", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045266", 
        "issn": [
          "0932-8092", 
          "1432-1769"
        ], 
        "name": "Machine Vision and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "An automatic assessment scheme for steel quality inspection", 
    "pagination": "113-128", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4d4a6aa0cc17c0885c20539048cbfc4ca26496cf77c9ed1ff4c8060f29b9debf"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s001380050130"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016221386"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s001380050130", 
      "https://app.dimensions.ai/details/publication/pub.1016221386"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000480.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s001380050130"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s001380050130'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s001380050130'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s001380050130'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s001380050130'


 

This table displays all metadata directly associated to this object as RDF triples.

82 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s001380050130 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nedd0314cd43c4750ad57105a27f8b9a5
4 schema:citation https://doi.org/10.1016/0734-189x(83)90094-4
5 schema:datePublished 2000-10
6 schema:datePublishedReg 2000-10-01
7 schema:description This paper presents an automatic system for steel quality assessment, by measuring textural properties of carbide distributions. In current steel inspection, specially etched and polished steel specimen surfaces are classified manually under a light microscope, by comparisons with a standard chart. This procedure is basically two-dimensional, reflecting the size of the carbide agglomerations and their directional distribution. To capture these textural properties in terms of image fea tures, we first apply a rich set of image-processing operations, including mathematical morphology, multi-channel Gabor filtering, and the computation of texture measures with automatic scale selection in linear scale-space. Then, a feature selector is applied to a 40-dimensional feature space, and a classification scheme is defined, which on a sample set of more than 400 images has classification performance values comparable to those of human metallographers. Finally, a fully automatic inspection system is designed, which actively selects the most salient carbide structure on the specimen surface for subsequent classification. The feasibility of the overall approach for future use in the production process is demonstrated by a prototype system. It is also shown how the presented classification scheme allows for the definition of a new reference chart in terms of quantitative measures.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N3638bec32d174a9c8d7b9f47c584d282
12 Nb2273f59875b4708919f2879d665abdd
13 sg:journal.1045266
14 schema:name An automatic assessment scheme for steel quality inspection
15 schema:pagination 113-128
16 schema:productId N69ee1f97ceca40f49f501d8c99d776da
17 N97c9dd4a319446c180be30d01f35be13
18 Ne65163f673e04c32940e7798b8af666b
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016221386
20 https://doi.org/10.1007/s001380050130
21 schema:sdDatePublished 2019-04-10T16:34
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N616ceb6c3fcd48689fce2559fb3795c2
24 schema:url http://link.springer.com/10.1007/s001380050130
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N31ce4c4f2f164e4bb34e35e5973c440f rdf:first sg:person.012033065653.49
29 rdf:rest N7675b988854c4c77a2942c9ec7cc7816
30 N3638bec32d174a9c8d7b9f47c584d282 schema:volumeNumber 12
31 rdf:type schema:PublicationVolume
32 N616ceb6c3fcd48689fce2559fb3795c2 schema:name Springer Nature - SN SciGraph project
33 rdf:type schema:Organization
34 N69ee1f97ceca40f49f501d8c99d776da schema:name doi
35 schema:value 10.1007/s001380050130
36 rdf:type schema:PropertyValue
37 N7675b988854c4c77a2942c9ec7cc7816 rdf:first sg:person.015666316421.55
38 rdf:rest rdf:nil
39 N97c9dd4a319446c180be30d01f35be13 schema:name dimensions_id
40 schema:value pub.1016221386
41 rdf:type schema:PropertyValue
42 Nb2273f59875b4708919f2879d665abdd schema:issueNumber 3
43 rdf:type schema:PublicationIssue
44 Ne65163f673e04c32940e7798b8af666b schema:name readcube_id
45 schema:value 4d4a6aa0cc17c0885c20539048cbfc4ca26496cf77c9ed1ff4c8060f29b9debf
46 rdf:type schema:PropertyValue
47 Nedd0314cd43c4750ad57105a27f8b9a5 rdf:first sg:person.014507651235.29
48 rdf:rest N31ce4c4f2f164e4bb34e35e5973c440f
49 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
50 schema:name Information and Computing Sciences
51 rdf:type schema:DefinedTerm
52 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
53 schema:name Artificial Intelligence and Image Processing
54 rdf:type schema:DefinedTerm
55 sg:journal.1045266 schema:issn 0932-8092
56 1432-1769
57 schema:name Machine Vision and Applications
58 rdf:type schema:Periodical
59 sg:person.012033065653.49 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
60 schema:familyName Pinz
61 schema:givenName Axel
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012033065653.49
63 rdf:type schema:Person
64 sg:person.014507651235.29 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
65 schema:familyName Wiltschi
66 schema:givenName Klaus
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014507651235.29
68 rdf:type schema:Person
69 sg:person.015666316421.55 schema:affiliation https://www.grid.ac/institutes/grid.5037.1
70 schema:familyName Lindeberg
71 schema:givenName Tony
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015666316421.55
73 rdf:type schema:Person
74 https://doi.org/10.1016/0734-189x(83)90094-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046982390
75 rdf:type schema:CreativeWork
76 https://www.grid.ac/institutes/grid.410413.3 schema:alternateName Graz University of Technology
77 schema:name Institute of Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16, 8010 Graz, Austria; e-mail: wiltschi@icg.tu-graz.ac.at, http://www.icg.tu-graz.ac.at, AT
78 Institute of Electrical Measurement and Measurement Signal Processing, Graz University of Technology, Kopernikusgasse 24, 8010 Graz, Austria; e-mail: pinz@emt.tu-graz.ac.at, http://www.emt.tu-graz.ac.at~pinz, AT
79 rdf:type schema:Organization
80 https://www.grid.ac/institutes/grid.5037.1 schema:alternateName Royal Institute of Technology
81 schema:name Computational Vision and Active Perception Laboratory, Department of Numerical Analysis and Computing Science, KTH, 100 44 Stockholm, Sweden; e-mail: tony@nada.kth.se, http://www.nada.kth/~tony, SE
82 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...