An automatic assessment scheme for steel quality inspection View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2000-10

AUTHORS

Klaus Wiltschi, Axel Pinz, Tony Lindeberg

ABSTRACT

. This paper presents an automatic system for steel quality assessment, by measuring textural properties of carbide distributions. In current steel inspection, specially etched and polished steel specimen surfaces are classified manually under a light microscope, by comparisons with a standard chart. This procedure is basically two-dimensional, reflecting the size of the carbide agglomerations and their directional distribution. To capture these textural properties in terms of image fea tures, we first apply a rich set of image-processing operations, including mathematical morphology, multi-channel Gabor filtering, and the computation of texture measures with automatic scale selection in linear scale-space. Then, a feature selector is applied to a 40-dimensional feature space, and a classification scheme is defined, which on a sample set of more than 400 images has classification performance values comparable to those of human metallographers. Finally, a fully automatic inspection system is designed, which actively selects the most salient carbide structure on the specimen surface for subsequent classification. The feasibility of the overall approach for future use in the production process is demonstrated by a prototype system. It is also shown how the presented classification scheme allows for the definition of a new reference chart in terms of quantitative measures. More... »

PAGES

113-128

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s001380050130

DOI

http://dx.doi.org/10.1007/s001380050130

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016221386


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16, 8010 Graz, Austria; e-mail: wiltschi@icg.tu-graz.ac.at, http://www.icg.tu-graz.ac.at, AT", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute of Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16, 8010 Graz, Austria; e-mail: wiltschi@icg.tu-graz.ac.at, http://www.icg.tu-graz.ac.at, AT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wiltschi", 
        "givenName": "Klaus", 
        "id": "sg:person.014507651235.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014507651235.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Electrical Measurement and Measurement Signal Processing, Graz University of Technology, Kopernikusgasse 24, 8010 Graz, Austria; e-mail: pinz@emt.tu-graz.ac.at, http://www.emt.tu-graz.ac.at~pinz, AT", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute of Electrical Measurement and Measurement Signal Processing, Graz University of Technology, Kopernikusgasse 24, 8010 Graz, Austria; e-mail: pinz@emt.tu-graz.ac.at, http://www.emt.tu-graz.ac.at~pinz, AT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pinz", 
        "givenName": "Axel", 
        "id": "sg:person.012033065653.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012033065653.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computational Vision and Active Perception Laboratory, Department of Numerical Analysis and Computing Science, KTH, 100 44 Stockholm, Sweden; e-mail: tony@nada.kth.se, http://www.nada.kth/~tony, SE", 
          "id": "http://www.grid.ac/institutes/grid.5037.1", 
          "name": [
            "Computational Vision and Active Perception Laboratory, Department of Numerical Analysis and Computing Science, KTH, 100 44 Stockholm, Sweden; e-mail: tony@nada.kth.se, http://www.nada.kth/~tony, SE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lindeberg", 
        "givenName": "Tony", 
        "id": "sg:person.015666316421.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015666316421.55"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-10", 
    "datePublishedReg": "2000-10-01", 
    "description": "Abstract. This paper presents an automatic system for steel quality assessment, by measuring textural properties of carbide distributions. In current steel inspection, specially etched and polished steel specimen surfaces are classified manually under a light microscope, by comparisons with a standard chart. This procedure is basically two-dimensional, reflecting the size of the carbide agglomerations and their directional distribution. To capture these textural properties in terms of image fea tures, we first apply a rich set of image-processing operations, including mathematical morphology, multi-channel Gabor filtering, and the computation of texture measures with automatic scale selection in linear scale-space. Then, a feature selector is applied to a 40-dimensional feature space, and a classification scheme is defined, which on a sample set of more than 400 images has classification performance values comparable to those of human metallographers. Finally, a fully automatic inspection system is designed, which actively selects the most salient carbide structure on the specimen surface for subsequent classification. The feasibility of the overall approach for future use in the production process is demonstrated by a prototype system. It is also shown how the presented classification scheme allows for the definition of a new reference chart in terms of quantitative measures.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s001380050130", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045266", 
        "issn": [
          "0932-8092", 
          "1432-1769"
        ], 
        "name": "Machine Vision and Applications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "specimen surface", 
      "steel specimen surface", 
      "automatic inspection system", 
      "carbide distribution", 
      "textural properties", 
      "carbide agglomeration", 
      "Multi-channel Gabor filtering", 
      "carbide structure", 
      "image-processing operations", 
      "quality inspection", 
      "inspection system", 
      "automatic scale selection", 
      "production process", 
      "texture measures", 
      "directional distribution", 
      "performance values", 
      "automatic system", 
      "surface", 
      "mathematical morphology", 
      "Gabor filtering", 
      "scale selection", 
      "presented classification scheme", 
      "properties", 
      "inspection", 
      "agglomeration", 
      "prototype system", 
      "metallographer", 
      "microscope", 
      "system", 
      "overall approach", 
      "subsequent classification", 
      "operation", 
      "scheme", 
      "distribution", 
      "morphology", 
      "filtering", 
      "feasibility", 
      "future use", 
      "process", 
      "structure", 
      "terms", 
      "feature space", 
      "size", 
      "standard charts", 
      "feature selector", 
      "ture", 
      "classification scheme", 
      "quantitative measures", 
      "quality assessment", 
      "computation", 
      "images", 
      "comparison", 
      "values", 
      "light microscope", 
      "approach", 
      "sample set", 
      "charts", 
      "set", 
      "selector", 
      "use", 
      "procedure", 
      "space", 
      "selection", 
      "assessment", 
      "classification", 
      "fea tures", 
      "assessment scheme", 
      "rich set", 
      "definition", 
      "measures", 
      "new reference charts", 
      "reference charts", 
      "paper", 
      "steel quality assessment", 
      "current steel inspection", 
      "steel inspection", 
      "image fea tures", 
      "classification performance values", 
      "human metallographers", 
      "salient carbide structure", 
      "automatic assessment scheme", 
      "steel quality inspection"
    ], 
    "name": "An automatic assessment scheme for steel quality inspection", 
    "pagination": "113-128", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016221386"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s001380050130"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s001380050130", 
      "https://app.dimensions.ai/details/publication/pub.1016221386"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_343.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s001380050130"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s001380050130'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s001380050130'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s001380050130'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s001380050130'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      21 PREDICATES      108 URIs      100 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s001380050130 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0cc969dd28a340f5b7e367f803fd152e
4 schema:datePublished 2000-10
5 schema:datePublishedReg 2000-10-01
6 schema:description Abstract. This paper presents an automatic system for steel quality assessment, by measuring textural properties of carbide distributions. In current steel inspection, specially etched and polished steel specimen surfaces are classified manually under a light microscope, by comparisons with a standard chart. This procedure is basically two-dimensional, reflecting the size of the carbide agglomerations and their directional distribution. To capture these textural properties in terms of image fea tures, we first apply a rich set of image-processing operations, including mathematical morphology, multi-channel Gabor filtering, and the computation of texture measures with automatic scale selection in linear scale-space. Then, a feature selector is applied to a 40-dimensional feature space, and a classification scheme is defined, which on a sample set of more than 400 images has classification performance values comparable to those of human metallographers. Finally, a fully automatic inspection system is designed, which actively selects the most salient carbide structure on the specimen surface for subsequent classification. The feasibility of the overall approach for future use in the production process is demonstrated by a prototype system. It is also shown how the presented classification scheme allows for the definition of a new reference chart in terms of quantitative measures.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N19af8ef7550e49cfb43aec03d00402c5
11 Na927c0dd2c1a4b65bb5e34d1b34b52a9
12 sg:journal.1045266
13 schema:keywords Gabor filtering
14 Multi-channel Gabor filtering
15 agglomeration
16 approach
17 assessment
18 assessment scheme
19 automatic assessment scheme
20 automatic inspection system
21 automatic scale selection
22 automatic system
23 carbide agglomeration
24 carbide distribution
25 carbide structure
26 charts
27 classification
28 classification performance values
29 classification scheme
30 comparison
31 computation
32 current steel inspection
33 definition
34 directional distribution
35 distribution
36 fea tures
37 feasibility
38 feature selector
39 feature space
40 filtering
41 future use
42 human metallographers
43 image fea tures
44 image-processing operations
45 images
46 inspection
47 inspection system
48 light microscope
49 mathematical morphology
50 measures
51 metallographer
52 microscope
53 morphology
54 new reference charts
55 operation
56 overall approach
57 paper
58 performance values
59 presented classification scheme
60 procedure
61 process
62 production process
63 properties
64 prototype system
65 quality assessment
66 quality inspection
67 quantitative measures
68 reference charts
69 rich set
70 salient carbide structure
71 sample set
72 scale selection
73 scheme
74 selection
75 selector
76 set
77 size
78 space
79 specimen surface
80 standard charts
81 steel inspection
82 steel quality assessment
83 steel quality inspection
84 steel specimen surface
85 structure
86 subsequent classification
87 surface
88 system
89 terms
90 textural properties
91 texture measures
92 ture
93 use
94 values
95 schema:name An automatic assessment scheme for steel quality inspection
96 schema:pagination 113-128
97 schema:productId Nb6a88c13b8144f91a3ab2a3322a86bb8
98 Ne7430d14b3c64408a0cded199bafe086
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016221386
100 https://doi.org/10.1007/s001380050130
101 schema:sdDatePublished 2021-11-01T18:04
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher Ne80549210a834c6a8fadaa8a59e85e15
104 schema:url https://doi.org/10.1007/s001380050130
105 sgo:license sg:explorer/license/
106 sgo:sdDataset articles
107 rdf:type schema:ScholarlyArticle
108 N0cc969dd28a340f5b7e367f803fd152e rdf:first sg:person.014507651235.29
109 rdf:rest N0d1ad5a5b7f94c6a956707c5f5e4fb3d
110 N0d1ad5a5b7f94c6a956707c5f5e4fb3d rdf:first sg:person.012033065653.49
111 rdf:rest N4cdb8df6595c4135a566bbb16df7bada
112 N19af8ef7550e49cfb43aec03d00402c5 schema:volumeNumber 12
113 rdf:type schema:PublicationVolume
114 N4cdb8df6595c4135a566bbb16df7bada rdf:first sg:person.015666316421.55
115 rdf:rest rdf:nil
116 Na927c0dd2c1a4b65bb5e34d1b34b52a9 schema:issueNumber 3
117 rdf:type schema:PublicationIssue
118 Nb6a88c13b8144f91a3ab2a3322a86bb8 schema:name doi
119 schema:value 10.1007/s001380050130
120 rdf:type schema:PropertyValue
121 Ne7430d14b3c64408a0cded199bafe086 schema:name dimensions_id
122 schema:value pub.1016221386
123 rdf:type schema:PropertyValue
124 Ne80549210a834c6a8fadaa8a59e85e15 schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
127 schema:name Information and Computing Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
130 schema:name Artificial Intelligence and Image Processing
131 rdf:type schema:DefinedTerm
132 sg:journal.1045266 schema:issn 0932-8092
133 1432-1769
134 schema:name Machine Vision and Applications
135 schema:publisher Springer Nature
136 rdf:type schema:Periodical
137 sg:person.012033065653.49 schema:affiliation grid-institutes:grid.410413.3
138 schema:familyName Pinz
139 schema:givenName Axel
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012033065653.49
141 rdf:type schema:Person
142 sg:person.014507651235.29 schema:affiliation grid-institutes:grid.410413.3
143 schema:familyName Wiltschi
144 schema:givenName Klaus
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014507651235.29
146 rdf:type schema:Person
147 sg:person.015666316421.55 schema:affiliation grid-institutes:grid.5037.1
148 schema:familyName Lindeberg
149 schema:givenName Tony
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015666316421.55
151 rdf:type schema:Person
152 grid-institutes:grid.410413.3 schema:alternateName Institute of Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16, 8010 Graz, Austria; e-mail: wiltschi@icg.tu-graz.ac.at, http://www.icg.tu-graz.ac.at, AT
153 Institute of Electrical Measurement and Measurement Signal Processing, Graz University of Technology, Kopernikusgasse 24, 8010 Graz, Austria; e-mail: pinz@emt.tu-graz.ac.at, http://www.emt.tu-graz.ac.at~pinz, AT
154 schema:name Institute of Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16, 8010 Graz, Austria; e-mail: wiltschi@icg.tu-graz.ac.at, http://www.icg.tu-graz.ac.at, AT
155 Institute of Electrical Measurement and Measurement Signal Processing, Graz University of Technology, Kopernikusgasse 24, 8010 Graz, Austria; e-mail: pinz@emt.tu-graz.ac.at, http://www.emt.tu-graz.ac.at~pinz, AT
156 rdf:type schema:Organization
157 grid-institutes:grid.5037.1 schema:alternateName Computational Vision and Active Perception Laboratory, Department of Numerical Analysis and Computing Science, KTH, 100 44 Stockholm, Sweden; e-mail: tony@nada.kth.se, http://www.nada.kth/~tony, SE
158 schema:name Computational Vision and Active Perception Laboratory, Department of Numerical Analysis and Computing Science, KTH, 100 44 Stockholm, Sweden; e-mail: tony@nada.kth.se, http://www.nada.kth/~tony, SE
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...