Viewpoint placement for inspection planning View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-10-30

AUTHORS

Petra Gospodnetić, Dennis Mosbach, Markus Rauhut, Hans Hagen

ABSTRACT

Inspection planning approaches so far have focused on automatically obtaining an optimal set of viewpoints required to cover a given object. While research has provided interesting results, the automatic inspection planning has still not been made a part of the everyday inspection system development process. This is mostly because the plans are difficult to verify and it is impossible to compare them to laboratory-developed plans. In this work, we give an overview of available generate-and-test approaches, evaluate their results for various objects and finally compare them to plans created by inspection system development experts. The comparison emphasizes both benefits and downsides of automated approaches and highlights problems which need to be tackled in the future in order to make the automated inspection planning more applicable. More... »

PAGES

2

References to SciGraph publications

  • 2020-10-15. Feature-Driven Viewpoint Placement for Model-Based Surface Inspection in MACHINE VISION AND APPLICATIONS
  • 2007-11-30. Model-based view planning in MACHINE VISION AND APPLICATIONS
  • 2003-12. A CAD-based 3D data acquisition strategy for inspection in MACHINE VISION AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00138-021-01252-z

    DOI

    http://dx.doi.org/10.1007/s00138-021-01252-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1142279565


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Image Processing Department, Fraunhofer ITWM, 67663, Kaiserslautern, Germany", 
              "id": "http://www.grid.ac/institutes/grid.461635.3", 
              "name": [
                "Computer Graphics and HCI Group, University of Kaiserslautern, 67663, Kaiserslautern, Germany", 
                "Image Processing Department, Fraunhofer ITWM, 67663, Kaiserslautern, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gospodneti\u0107", 
            "givenName": "Petra", 
            "id": "sg:person.07610010611.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07610010611.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Image Processing Department, Fraunhofer ITWM, 67663, Kaiserslautern, Germany", 
              "id": "http://www.grid.ac/institutes/grid.461635.3", 
              "name": [
                "Computer Graphics and HCI Group, University of Kaiserslautern, 67663, Kaiserslautern, Germany", 
                "Image Processing Department, Fraunhofer ITWM, 67663, Kaiserslautern, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mosbach", 
            "givenName": "Dennis", 
            "id": "sg:person.012310577423.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012310577423.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Image Processing Department, Fraunhofer ITWM, 67663, Kaiserslautern, Germany", 
              "id": "http://www.grid.ac/institutes/grid.461635.3", 
              "name": [
                "Image Processing Department, Fraunhofer ITWM, 67663, Kaiserslautern, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rauhut", 
            "givenName": "Markus", 
            "id": "sg:person.012644026011.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012644026011.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Computer Graphics and HCI Group, University of Kaiserslautern, 67663, Kaiserslautern, Germany", 
              "id": "http://www.grid.ac/institutes/grid.7645.0", 
              "name": [
                "Computer Graphics and HCI Group, University of Kaiserslautern, 67663, Kaiserslautern, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hagen", 
            "givenName": "Hans", 
            "id": "sg:person.01155066112.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155066112.17"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00138-007-0110-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016876821", 
              "https://doi.org/10.1007/s00138-007-0110-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00138-003-0131-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010293185", 
              "https://doi.org/10.1007/s00138-003-0131-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00138-020-01116-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131777946", 
              "https://doi.org/10.1007/s00138-020-01116-y"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-10-30", 
        "datePublishedReg": "2021-10-30", 
        "description": "Inspection planning approaches so far have focused on automatically obtaining an optimal set of viewpoints required to cover a given object. While research has provided interesting results, the automatic inspection planning has still not been made a part of the everyday inspection system development process. This is mostly because the plans are difficult to verify and it is impossible to compare them to laboratory-developed plans. In this work, we give an overview of available generate-and-test approaches, evaluate their results for various objects and finally compare them to plans created by inspection system development experts. The comparison emphasizes both benefits and downsides of automated approaches and highlights problems which need to be tackled in the future in order to make the automated inspection planning more applicable.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00138-021-01252-z", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045266", 
            "issn": [
              "0932-8092", 
              "1432-1769"
            ], 
            "name": "Machine Vision and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "33"
          }
        ], 
        "keywords": [
          "inspection planning", 
          "system development process", 
          "automated inspection", 
          "viewpoint placement", 
          "development process", 
          "optimal set", 
          "planning approach", 
          "test approach", 
          "objects", 
          "highlight problems", 
          "planning", 
          "interesting results", 
          "development experts", 
          "experts", 
          "set", 
          "downside", 
          "plan", 
          "inspection", 
          "generate", 
          "viewpoint", 
          "work", 
          "overview", 
          "order", 
          "results", 
          "research", 
          "benefits", 
          "process", 
          "future", 
          "placement", 
          "part", 
          "comparison", 
          "approach", 
          "problem", 
          "Inspection planning approaches", 
          "automatic inspection planning", 
          "everyday inspection system development process", 
          "inspection system development process", 
          "laboratory-developed plans", 
          "available generate", 
          "inspection system development experts", 
          "system development experts"
        ], 
        "name": "Viewpoint placement for inspection planning", 
        "pagination": "2", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1142279565"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00138-021-01252-z"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00138-021-01252-z", 
          "https://app.dimensions.ai/details/publication/pub.1142279565"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T19:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_895.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00138-021-01252-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00138-021-01252-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00138-021-01252-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00138-021-01252-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00138-021-01252-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    136 TRIPLES      22 PREDICATES      69 URIs      58 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00138-021-01252-z schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N2cbd83c60e494de89922e53723123d9e
    4 schema:citation sg:pub.10.1007/s00138-003-0131-4
    5 sg:pub.10.1007/s00138-007-0110-2
    6 sg:pub.10.1007/s00138-020-01116-y
    7 schema:datePublished 2021-10-30
    8 schema:datePublishedReg 2021-10-30
    9 schema:description Inspection planning approaches so far have focused on automatically obtaining an optimal set of viewpoints required to cover a given object. While research has provided interesting results, the automatic inspection planning has still not been made a part of the everyday inspection system development process. This is mostly because the plans are difficult to verify and it is impossible to compare them to laboratory-developed plans. In this work, we give an overview of available generate-and-test approaches, evaluate their results for various objects and finally compare them to plans created by inspection system development experts. The comparison emphasizes both benefits and downsides of automated approaches and highlights problems which need to be tackled in the future in order to make the automated inspection planning more applicable.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N66439d51253e44688f07e68109c2b30d
    14 N76024e2933514c539a7e69d0d5031346
    15 sg:journal.1045266
    16 schema:keywords Inspection planning approaches
    17 approach
    18 automated inspection
    19 automatic inspection planning
    20 available generate
    21 benefits
    22 comparison
    23 development experts
    24 development process
    25 downside
    26 everyday inspection system development process
    27 experts
    28 future
    29 generate
    30 highlight problems
    31 inspection
    32 inspection planning
    33 inspection system development experts
    34 inspection system development process
    35 interesting results
    36 laboratory-developed plans
    37 objects
    38 optimal set
    39 order
    40 overview
    41 part
    42 placement
    43 plan
    44 planning
    45 planning approach
    46 problem
    47 process
    48 research
    49 results
    50 set
    51 system development experts
    52 system development process
    53 test approach
    54 viewpoint
    55 viewpoint placement
    56 work
    57 schema:name Viewpoint placement for inspection planning
    58 schema:pagination 2
    59 schema:productId N2954712307664bcc9248f6ffe25111f7
    60 Nef7d2282bad94c318d7e0175dc85a3cf
    61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142279565
    62 https://doi.org/10.1007/s00138-021-01252-z
    63 schema:sdDatePublished 2022-01-01T19:01
    64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    65 schema:sdPublisher N688c37518f5d4e3f9acfd97b731d3f31
    66 schema:url https://doi.org/10.1007/s00138-021-01252-z
    67 sgo:license sg:explorer/license/
    68 sgo:sdDataset articles
    69 rdf:type schema:ScholarlyArticle
    70 N2954712307664bcc9248f6ffe25111f7 schema:name dimensions_id
    71 schema:value pub.1142279565
    72 rdf:type schema:PropertyValue
    73 N2cbd83c60e494de89922e53723123d9e rdf:first sg:person.07610010611.65
    74 rdf:rest Nf92459dfcbd840919940d6345e3db832
    75 N66439d51253e44688f07e68109c2b30d schema:issueNumber 1
    76 rdf:type schema:PublicationIssue
    77 N688c37518f5d4e3f9acfd97b731d3f31 schema:name Springer Nature - SN SciGraph project
    78 rdf:type schema:Organization
    79 N76024e2933514c539a7e69d0d5031346 schema:volumeNumber 33
    80 rdf:type schema:PublicationVolume
    81 Nd1fafc3562d3480c965aec5e07580753 rdf:first sg:person.01155066112.17
    82 rdf:rest rdf:nil
    83 Ndcd7966145b34ddaa784f781aa4babaa rdf:first sg:person.012644026011.58
    84 rdf:rest Nd1fafc3562d3480c965aec5e07580753
    85 Nef7d2282bad94c318d7e0175dc85a3cf schema:name doi
    86 schema:value 10.1007/s00138-021-01252-z
    87 rdf:type schema:PropertyValue
    88 Nf92459dfcbd840919940d6345e3db832 rdf:first sg:person.012310577423.01
    89 rdf:rest Ndcd7966145b34ddaa784f781aa4babaa
    90 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Information and Computing Sciences
    92 rdf:type schema:DefinedTerm
    93 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Artificial Intelligence and Image Processing
    95 rdf:type schema:DefinedTerm
    96 sg:journal.1045266 schema:issn 0932-8092
    97 1432-1769
    98 schema:name Machine Vision and Applications
    99 schema:publisher Springer Nature
    100 rdf:type schema:Periodical
    101 sg:person.01155066112.17 schema:affiliation grid-institutes:grid.7645.0
    102 schema:familyName Hagen
    103 schema:givenName Hans
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155066112.17
    105 rdf:type schema:Person
    106 sg:person.012310577423.01 schema:affiliation grid-institutes:grid.461635.3
    107 schema:familyName Mosbach
    108 schema:givenName Dennis
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012310577423.01
    110 rdf:type schema:Person
    111 sg:person.012644026011.58 schema:affiliation grid-institutes:grid.461635.3
    112 schema:familyName Rauhut
    113 schema:givenName Markus
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012644026011.58
    115 rdf:type schema:Person
    116 sg:person.07610010611.65 schema:affiliation grid-institutes:grid.461635.3
    117 schema:familyName Gospodnetić
    118 schema:givenName Petra
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07610010611.65
    120 rdf:type schema:Person
    121 sg:pub.10.1007/s00138-003-0131-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010293185
    122 https://doi.org/10.1007/s00138-003-0131-4
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/s00138-007-0110-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016876821
    125 https://doi.org/10.1007/s00138-007-0110-2
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/s00138-020-01116-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1131777946
    128 https://doi.org/10.1007/s00138-020-01116-y
    129 rdf:type schema:CreativeWork
    130 grid-institutes:grid.461635.3 schema:alternateName Image Processing Department, Fraunhofer ITWM, 67663, Kaiserslautern, Germany
    131 schema:name Computer Graphics and HCI Group, University of Kaiserslautern, 67663, Kaiserslautern, Germany
    132 Image Processing Department, Fraunhofer ITWM, 67663, Kaiserslautern, Germany
    133 rdf:type schema:Organization
    134 grid-institutes:grid.7645.0 schema:alternateName Computer Graphics and HCI Group, University of Kaiserslautern, 67663, Kaiserslautern, Germany
    135 schema:name Computer Graphics and HCI Group, University of Kaiserslautern, 67663, Kaiserslautern, Germany
    136 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...