FPANet: Feature-enhanced position attention network for semantic segmentation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-09-25

AUTHORS

Haixia Xu, Shuailong Wang, Yunjia Huang, Wei Zhou, Qi Chen, Dongbo Zhang

ABSTRACT

Attention mechanism is beneficial to capture the contextual information in visual task. This paper proposes a feature-enhanced position attention network (FPANet) for semantic segmentation based on framework of FCN. On the top of dilated FCN, we design a feature integration module, which aggregates the context over local features by expanding the receptive field and multiscale representation, to promote a position attention module, which models spatial interdependencies over features, so as to form a feature-enhanced position attention module to enhance the discrimination of features for better semantic segmentation. Experimental comparisons show that our proposed FPANet is superior to other state-of-the-art models in the performance of segmentation accuracy on datasets PASCAL VOC 2012 and Cityscapes. More... »

PAGES

119

References to SciGraph publications

  • 2009-09-09. The Pascal Visual Object Classes (VOC) Challenge in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2016-08-27. Convolutional Scale Invariance for Semantic Segmentation in PATTERN RECOGNITION
  • 2018-10-06. Adaptive Affinity Fields for Semantic Segmentation in COMPUTER VISION – ECCV 2018
  • 2020-11-07. Object-Contextual Representations for Semantic Segmentation in COMPUTER VISION – ECCV 2020
  • 2016-09-17. Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation in COMPUTER VISION – ECCV 2016
  • 2018-10-06. CBAM: Convolutional Block Attention Module in COMPUTER VISION – ECCV 2018
  • 2015-11-18. U-Net: Convolutional Networks for Biomedical Image Segmentation in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2015
  • 2020-11-19. Deep semantic segmentation-based multiple description coding in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2018-10-05. PSANet: Point-wise Spatial Attention Network for Scene Parsing in COMPUTER VISION – ECCV 2018
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00138-021-01246-x

    DOI

    http://dx.doi.org/10.1007/s00138-021-01246-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1141395198


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Automation and Electronic Information, XiangTan University, Xiangtan, China", 
              "id": "http://www.grid.ac/institutes/grid.412982.4", 
              "name": [
                "School of Automation and Electronic Information, XiangTan University, Xiangtan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Haixia", 
            "id": "sg:person.014527172467.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014527172467.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Automation and Electronic Information, XiangTan University, Xiangtan, China", 
              "id": "http://www.grid.ac/institutes/grid.412982.4", 
              "name": [
                "School of Automation and Electronic Information, XiangTan University, Xiangtan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Shuailong", 
            "id": "sg:person.014167064305.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014167064305.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Automation and Electronic Information, XiangTan University, Xiangtan, China", 
              "id": "http://www.grid.ac/institutes/grid.412982.4", 
              "name": [
                "School of Automation and Electronic Information, XiangTan University, Xiangtan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Yunjia", 
            "id": "sg:person.010423074011.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010423074011.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Automation and Electronic Information, XiangTan University, Xiangtan, China", 
              "id": "http://www.grid.ac/institutes/grid.412982.4", 
              "name": [
                "School of Automation and Electronic Information, XiangTan University, Xiangtan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Wei", 
            "id": "sg:person.015620625573.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015620625573.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Automation and Electronic Information, XiangTan University, Xiangtan, China", 
              "id": "http://www.grid.ac/institutes/grid.412982.4", 
              "name": [
                "School of Automation and Electronic Information, XiangTan University, Xiangtan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Qi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Automation and Electronic Information, XiangTan University, Xiangtan, China", 
              "id": "http://www.grid.ac/institutes/grid.412982.4", 
              "name": [
                "School of Automation and Electronic Information, XiangTan University, Xiangtan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Dongbo", 
            "id": "sg:person.07526470474.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07526470474.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-030-01234-2_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107454571", 
              "https://doi.org/10.1007/978-3-030-01234-2_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-45886-1_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001427984", 
              "https://doi.org/10.1007/978-3-319-45886-1_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-01240-3_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107463349", 
              "https://doi.org/10.1007/978-3-030-01240-3_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-58539-6_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132404102", 
              "https://doi.org/10.1007/978-3-030-58539-6_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-020-09283-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132778785", 
              "https://doi.org/10.1007/s11042-020-09283-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-01246-5_36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107454649", 
              "https://doi.org/10.1007/978-3-030-01246-5_36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46487-9_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014346769", 
              "https://doi.org/10.1007/978-3-319-46487-9_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-24574-4_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017774818", 
              "https://doi.org/10.1007/978-3-319-24574-4_28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-009-0275-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014796149", 
              "https://doi.org/10.1007/s11263-009-0275-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-09-25", 
        "datePublishedReg": "2021-09-25", 
        "description": "Attention mechanism is beneficial to capture the contextual information in visual task. This paper proposes a feature-enhanced position attention network (FPANet) for semantic segmentation based on framework of FCN. On the top of dilated FCN, we design a feature integration module, which aggregates the context over local features by expanding the receptive field and multiscale representation, to promote a position attention module, which models spatial interdependencies over features, so as to form a feature-enhanced position attention module to enhance the discrimination of features for better semantic segmentation. Experimental comparisons show that our proposed FPANet is superior to other state-of-the-art models in the performance of segmentation accuracy on datasets PASCAL VOC 2012 and Cityscapes.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00138-021-01246-x", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1045266", 
            "issn": [
              "0932-8092", 
              "1432-1769"
            ], 
            "name": "Machine Vision and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "32"
          }
        ], 
        "keywords": [
          "semantic segmentation", 
          "position attention module", 
          "attention module", 
          "attention network", 
          "feature integration module", 
          "better semantic segmentation", 
          "PASCAL VOC 2012", 
          "discrimination of features", 
          "attention mechanism", 
          "VOC 2012", 
          "segmentation accuracy", 
          "contextual information", 
          "integration module", 
          "art models", 
          "local features", 
          "multiscale representation", 
          "segmentation", 
          "visual tasks", 
          "FCN", 
          "experimental comparison", 
          "network", 
          "module", 
          "receptive fields", 
          "features", 
          "task", 
          "cityscape", 
          "framework", 
          "accuracy", 
          "representation", 
          "information", 
          "interdependencies", 
          "spatial interdependencies", 
          "discrimination", 
          "performance", 
          "context", 
          "top", 
          "model", 
          "field", 
          "state", 
          "comparison", 
          "mechanism", 
          "paper"
        ], 
        "name": "FPANet: Feature-enhanced position attention network for semantic segmentation", 
        "pagination": "119", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1141395198"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00138-021-01246-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00138-021-01246-x", 
          "https://app.dimensions.ai/details/publication/pub.1141395198"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T10:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_923.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00138-021-01246-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00138-021-01246-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00138-021-01246-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00138-021-01246-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00138-021-01246-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    170 TRIPLES      22 PREDICATES      76 URIs      59 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00138-021-01246-x schema:about anzsrc-for:17
    2 anzsrc-for:1701
    3 schema:author N92b7d00cf1b9450fb5ac2edd51867c4d
    4 schema:citation sg:pub.10.1007/978-3-030-01234-2_1
    5 sg:pub.10.1007/978-3-030-01240-3_17
    6 sg:pub.10.1007/978-3-030-01246-5_36
    7 sg:pub.10.1007/978-3-030-58539-6_11
    8 sg:pub.10.1007/978-3-319-24574-4_28
    9 sg:pub.10.1007/978-3-319-45886-1_6
    10 sg:pub.10.1007/978-3-319-46487-9_32
    11 sg:pub.10.1007/s11042-020-09283-w
    12 sg:pub.10.1007/s11263-009-0275-4
    13 schema:datePublished 2021-09-25
    14 schema:datePublishedReg 2021-09-25
    15 schema:description Attention mechanism is beneficial to capture the contextual information in visual task. This paper proposes a feature-enhanced position attention network (FPANet) for semantic segmentation based on framework of FCN. On the top of dilated FCN, we design a feature integration module, which aggregates the context over local features by expanding the receptive field and multiscale representation, to promote a position attention module, which models spatial interdependencies over features, so as to form a feature-enhanced position attention module to enhance the discrimination of features for better semantic segmentation. Experimental comparisons show that our proposed FPANet is superior to other state-of-the-art models in the performance of segmentation accuracy on datasets PASCAL VOC 2012 and Cityscapes.
    16 schema:genre article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf Nad0d5a99e3834517a4014e40f612b51b
    20 Nddc9c0adc0224d2aad3d20ad60b8dbef
    21 sg:journal.1045266
    22 schema:keywords FCN
    23 PASCAL VOC 2012
    24 VOC 2012
    25 accuracy
    26 art models
    27 attention mechanism
    28 attention module
    29 attention network
    30 better semantic segmentation
    31 cityscape
    32 comparison
    33 context
    34 contextual information
    35 discrimination
    36 discrimination of features
    37 experimental comparison
    38 feature integration module
    39 features
    40 field
    41 framework
    42 information
    43 integration module
    44 interdependencies
    45 local features
    46 mechanism
    47 model
    48 module
    49 multiscale representation
    50 network
    51 paper
    52 performance
    53 position attention module
    54 receptive fields
    55 representation
    56 segmentation
    57 segmentation accuracy
    58 semantic segmentation
    59 spatial interdependencies
    60 state
    61 task
    62 top
    63 visual tasks
    64 schema:name FPANet: Feature-enhanced position attention network for semantic segmentation
    65 schema:pagination 119
    66 schema:productId N2d8f331712ed41308b96780d894a1699
    67 Naf91f7f59f94491797dccfcb0d18e5e7
    68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141395198
    69 https://doi.org/10.1007/s00138-021-01246-x
    70 schema:sdDatePublished 2022-05-10T10:32
    71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    72 schema:sdPublisher N55fc403da44d40bc8b8718509ff99817
    73 schema:url https://doi.org/10.1007/s00138-021-01246-x
    74 sgo:license sg:explorer/license/
    75 sgo:sdDataset articles
    76 rdf:type schema:ScholarlyArticle
    77 N00653a60c50d49969cc44c3414168b5f rdf:first sg:person.010423074011.53
    78 rdf:rest Nadda78936f32407a87548c8415095554
    79 N2d8f331712ed41308b96780d894a1699 schema:name dimensions_id
    80 schema:value pub.1141395198
    81 rdf:type schema:PropertyValue
    82 N4baaf7c0bad54cd598e592271c398a86 rdf:first sg:person.07526470474.43
    83 rdf:rest rdf:nil
    84 N55fc403da44d40bc8b8718509ff99817 schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 N92b7d00cf1b9450fb5ac2edd51867c4d rdf:first sg:person.014527172467.75
    87 rdf:rest Ncf39f54d3fcb4ad1bacb703c80ea9d9d
    88 Nad0d5a99e3834517a4014e40f612b51b schema:volumeNumber 32
    89 rdf:type schema:PublicationVolume
    90 Nadda78936f32407a87548c8415095554 rdf:first sg:person.015620625573.02
    91 rdf:rest Nccb9cebced0d4fc9953282e82daa13de
    92 Naf91f7f59f94491797dccfcb0d18e5e7 schema:name doi
    93 schema:value 10.1007/s00138-021-01246-x
    94 rdf:type schema:PropertyValue
    95 Nb4372bda04534104b2c0e6a46d28702e schema:affiliation grid-institutes:grid.412982.4
    96 schema:familyName Chen
    97 schema:givenName Qi
    98 rdf:type schema:Person
    99 Nccb9cebced0d4fc9953282e82daa13de rdf:first Nb4372bda04534104b2c0e6a46d28702e
    100 rdf:rest N4baaf7c0bad54cd598e592271c398a86
    101 Ncf39f54d3fcb4ad1bacb703c80ea9d9d rdf:first sg:person.014167064305.48
    102 rdf:rest N00653a60c50d49969cc44c3414168b5f
    103 Nddc9c0adc0224d2aad3d20ad60b8dbef schema:issueNumber 6
    104 rdf:type schema:PublicationIssue
    105 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Psychology and Cognitive Sciences
    107 rdf:type schema:DefinedTerm
    108 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Psychology
    110 rdf:type schema:DefinedTerm
    111 sg:journal.1045266 schema:issn 0932-8092
    112 1432-1769
    113 schema:name Machine Vision and Applications
    114 schema:publisher Springer Nature
    115 rdf:type schema:Periodical
    116 sg:person.010423074011.53 schema:affiliation grid-institutes:grid.412982.4
    117 schema:familyName Huang
    118 schema:givenName Yunjia
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010423074011.53
    120 rdf:type schema:Person
    121 sg:person.014167064305.48 schema:affiliation grid-institutes:grid.412982.4
    122 schema:familyName Wang
    123 schema:givenName Shuailong
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014167064305.48
    125 rdf:type schema:Person
    126 sg:person.014527172467.75 schema:affiliation grid-institutes:grid.412982.4
    127 schema:familyName Xu
    128 schema:givenName Haixia
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014527172467.75
    130 rdf:type schema:Person
    131 sg:person.015620625573.02 schema:affiliation grid-institutes:grid.412982.4
    132 schema:familyName Zhou
    133 schema:givenName Wei
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015620625573.02
    135 rdf:type schema:Person
    136 sg:person.07526470474.43 schema:affiliation grid-institutes:grid.412982.4
    137 schema:familyName Zhang
    138 schema:givenName Dongbo
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07526470474.43
    140 rdf:type schema:Person
    141 sg:pub.10.1007/978-3-030-01234-2_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107454571
    142 https://doi.org/10.1007/978-3-030-01234-2_1
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/978-3-030-01240-3_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107463349
    145 https://doi.org/10.1007/978-3-030-01240-3_17
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/978-3-030-01246-5_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107454649
    148 https://doi.org/10.1007/978-3-030-01246-5_36
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/978-3-030-58539-6_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132404102
    151 https://doi.org/10.1007/978-3-030-58539-6_11
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/978-3-319-24574-4_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017774818
    154 https://doi.org/10.1007/978-3-319-24574-4_28
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/978-3-319-45886-1_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001427984
    157 https://doi.org/10.1007/978-3-319-45886-1_6
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/978-3-319-46487-9_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014346769
    160 https://doi.org/10.1007/978-3-319-46487-9_32
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s11042-020-09283-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1132778785
    163 https://doi.org/10.1007/s11042-020-09283-w
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s11263-009-0275-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014796149
    166 https://doi.org/10.1007/s11263-009-0275-4
    167 rdf:type schema:CreativeWork
    168 grid-institutes:grid.412982.4 schema:alternateName School of Automation and Electronic Information, XiangTan University, Xiangtan, China
    169 schema:name School of Automation and Electronic Information, XiangTan University, Xiangtan, China
    170 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...