Depthwise grouped convolution for object detection View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-09-13

AUTHORS

Yongwei Liao, Siwei Lu, Zhenguo Yang, Wenyin Liu

ABSTRACT

Object detection usually adopts two-stage end-to-end networks, which use backbone network (such as VGG and ResNet) for feature extraction and are combined with the region proposal network (RPN) for object localization and classification. In this paper, we explore a novel depthwise grouped convolution (DGC) in the backbone network by integrating channels grouping and depthwise separable convolution, which is able to share the convolution parameters in different channels to reduce the amounts of parameters for speeding up training. In particular, split and shuffle strategies of channels are introduced to enhance information exchange between different groups of channels in DGC block, which can prevent the decrease of performance caused by insufficient object samples. Furthermore, non-local block is adopted in RPN to focus on small objects that are hard to identify. Consequently, we introduce margin-based loss to guide the model training together with the loss of classification and regression. Experiments conducted on the VOC2007, VOC2012 and COCO2017 datasets demonstrate the efficiency and effectiveness of our method for object detection. More... »

PAGES

115

References to SciGraph publications

  • 2018-12-07. Saliency object detection: integrating reconstruction and prior in MACHINE VISION AND APPLICATIONS
  • 2018-04-09. A maximum likelihood filter using non-local information for despeckling of ultrasound images in MACHINE VISION AND APPLICATIONS
  • 2016-09-17. SSD: Single Shot MultiBox Detector in COMPUTER VISION – ECCV 2016
  • 2018-10-09. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design in COMPUTER VISION – ECCV 2018
  • 2017-12-08. S-OHEM: Stratified Online Hard Example Mining for Object Detection in COMPUTER VISION
  • 2020-03-25. User-interactive salient object detection using YOLOv2, lazy snapping, and gabor filters in MACHINE VISION AND APPLICATIONS
  • 2019-03-22. Small object segmentation with fully convolutional network based on overlapping domain decomposition in MACHINE VISION AND APPLICATIONS
  • 2020-01-07. Aerial-DEM geolocalization for GPS-denied UAS navigation in MACHINE VISION AND APPLICATIONS
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 2014. Microsoft COCO: Common Objects in Context in COMPUTER VISION – ECCV 2014
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00138-021-01243-0

    DOI

    http://dx.doi.org/10.1007/s00138-021-01243-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1141079119


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1702", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cognitive Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.411851.8", 
              "name": [
                "School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liao", 
            "givenName": "Yongwei", 
            "id": "sg:person.016366046350.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016366046350.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.411851.8", 
              "name": [
                "School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Siwei", 
            "id": "sg:person.07457326010.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07457326010.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.411851.8", 
              "name": [
                "School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Zhenguo", 
            "id": "sg:person.010456660353.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010456660353.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen, China", 
              "id": "http://www.grid.ac/institutes/grid.508161.b", 
              "name": [
                "School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China", 
                "Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Wenyin", 
            "id": "sg:person.01144514770.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144514770.23"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00138-019-01052-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123948577", 
              "https://doi.org/10.1007/s00138-019-01052-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00138-020-01065-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125901951", 
              "https://doi.org/10.1007/s00138-020-01065-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-981-10-7305-2_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099621118", 
              "https://doi.org/10.1007/978-981-10-7305-2_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-10602-1_48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045321436", 
              "https://doi.org/10.1007/978-3-319-10602-1_48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-7908-2604-3_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017229575", 
              "https://doi.org/10.1007/978-3-7908-2604-3_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46448-0_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017177111", 
              "https://doi.org/10.1007/978-3-319-46448-0_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-01264-9_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107502755", 
              "https://doi.org/10.1007/978-3-030-01264-9_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00138-019-01023-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112941994", 
              "https://doi.org/10.1007/s00138-019-01023-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00138-018-0929-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103196465", 
              "https://doi.org/10.1007/s00138-018-0929-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00138-018-0995-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110448579", 
              "https://doi.org/10.1007/s00138-018-0995-y"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-09-13", 
        "datePublishedReg": "2021-09-13", 
        "description": "Object detection usually adopts two-stage end-to-end networks, which use backbone network (such as VGG and ResNet) for feature extraction and are combined with the region proposal network (RPN) for object localization and classification. In this paper, we explore a novel depthwise grouped convolution (DGC) in the backbone network by integrating channels grouping and depthwise separable convolution, which is able to share the convolution parameters in different channels to reduce the amounts of parameters for speeding up training. In particular, split and shuffle strategies of channels are introduced to enhance information exchange between different groups of channels in DGC block, which can prevent the decrease of performance caused by insufficient object samples. Furthermore, non-local block is adopted in RPN to focus on small objects that are hard to identify. Consequently, we introduce margin-based loss to guide the model training together with the loss of classification and regression. Experiments conducted on the VOC2007, VOC2012 and COCO2017 datasets demonstrate the efficiency and effectiveness of our method for object detection.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00138-021-01243-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1045266", 
            "issn": [
              "0932-8092", 
              "1432-1769"
            ], 
            "name": "Machine Vision and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "32"
          }
        ], 
        "keywords": [
          "region proposal network", 
          "object detection", 
          "backbone network", 
          "two-stage end", 
          "non-local block", 
          "amount of parameters", 
          "separable convolution", 
          "end network", 
          "proposal network", 
          "COCO2017 dataset", 
          "feature extraction", 
          "margin-based loss", 
          "model training", 
          "object localization", 
          "convolution parameters", 
          "information exchange", 
          "object samples", 
          "shuffle strategy", 
          "network", 
          "small objects", 
          "depthwise", 
          "convolution", 
          "different channels", 
          "classification", 
          "decrease of performance", 
          "VOC2007", 
          "VOC2012", 
          "detection", 
          "dataset", 
          "objects", 
          "training", 
          "channels", 
          "block", 
          "extraction", 
          "performance", 
          "effectiveness", 
          "efficiency", 
          "experiments", 
          "method", 
          "parameters", 
          "different groups", 
          "localization", 
          "exchange", 
          "strategies", 
          "end", 
          "amount", 
          "regression", 
          "loss", 
          "group", 
          "samples", 
          "decrease", 
          "paper", 
          "novel depthwise", 
          "DGC block", 
          "insufficient object samples", 
          "loss of classification"
        ], 
        "name": "Depthwise grouped convolution for object detection", 
        "pagination": "115", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1141079119"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00138-021-01243-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00138-021-01243-0", 
          "https://app.dimensions.ai/details/publication/pub.1141079119"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T19:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_907.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00138-021-01243-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00138-021-01243-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00138-021-01243-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00138-021-01243-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00138-021-01243-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    191 TRIPLES      22 PREDICATES      94 URIs      73 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00138-021-01243-0 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 anzsrc-for:0802
    4 anzsrc-for:17
    5 anzsrc-for:1702
    6 schema:author Na8956548fbbb4332a797cc14dcbb2b8a
    7 schema:citation sg:pub.10.1007/978-3-030-01264-9_8
    8 sg:pub.10.1007/978-3-319-10602-1_48
    9 sg:pub.10.1007/978-3-319-46448-0_2
    10 sg:pub.10.1007/978-3-7908-2604-3_16
    11 sg:pub.10.1007/978-981-10-7305-2_15
    12 sg:pub.10.1007/s00138-018-0929-8
    13 sg:pub.10.1007/s00138-018-0995-y
    14 sg:pub.10.1007/s00138-019-01023-x
    15 sg:pub.10.1007/s00138-019-01052-6
    16 sg:pub.10.1007/s00138-020-01065-6
    17 schema:datePublished 2021-09-13
    18 schema:datePublishedReg 2021-09-13
    19 schema:description Object detection usually adopts two-stage end-to-end networks, which use backbone network (such as VGG and ResNet) for feature extraction and are combined with the region proposal network (RPN) for object localization and classification. In this paper, we explore a novel depthwise grouped convolution (DGC) in the backbone network by integrating channels grouping and depthwise separable convolution, which is able to share the convolution parameters in different channels to reduce the amounts of parameters for speeding up training. In particular, split and shuffle strategies of channels are introduced to enhance information exchange between different groups of channels in DGC block, which can prevent the decrease of performance caused by insufficient object samples. Furthermore, non-local block is adopted in RPN to focus on small objects that are hard to identify. Consequently, we introduce margin-based loss to guide the model training together with the loss of classification and regression. Experiments conducted on the VOC2007, VOC2012 and COCO2017 datasets demonstrate the efficiency and effectiveness of our method for object detection.
    20 schema:genre article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N08622c46b08d4243bd6cf6aa319df670
    24 N4219fbe46a214dcdb92251da5dc2b651
    25 sg:journal.1045266
    26 schema:keywords COCO2017 dataset
    27 DGC block
    28 VOC2007
    29 VOC2012
    30 amount
    31 amount of parameters
    32 backbone network
    33 block
    34 channels
    35 classification
    36 convolution
    37 convolution parameters
    38 dataset
    39 decrease
    40 decrease of performance
    41 depthwise
    42 detection
    43 different channels
    44 different groups
    45 effectiveness
    46 efficiency
    47 end
    48 end network
    49 exchange
    50 experiments
    51 extraction
    52 feature extraction
    53 group
    54 information exchange
    55 insufficient object samples
    56 localization
    57 loss
    58 loss of classification
    59 margin-based loss
    60 method
    61 model training
    62 network
    63 non-local block
    64 novel depthwise
    65 object detection
    66 object localization
    67 object samples
    68 objects
    69 paper
    70 parameters
    71 performance
    72 proposal network
    73 region proposal network
    74 regression
    75 samples
    76 separable convolution
    77 shuffle strategy
    78 small objects
    79 strategies
    80 training
    81 two-stage end
    82 schema:name Depthwise grouped convolution for object detection
    83 schema:pagination 115
    84 schema:productId N330415a2f1ac40969038e6002d250eec
    85 Na655affe6dfa474ba3fb649b25a027e2
    86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141079119
    87 https://doi.org/10.1007/s00138-021-01243-0
    88 schema:sdDatePublished 2022-01-01T19:01
    89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    90 schema:sdPublisher Nb16a6f7778274bd3b03c3d95674cf4ef
    91 schema:url https://doi.org/10.1007/s00138-021-01243-0
    92 sgo:license sg:explorer/license/
    93 sgo:sdDataset articles
    94 rdf:type schema:ScholarlyArticle
    95 N08622c46b08d4243bd6cf6aa319df670 schema:volumeNumber 32
    96 rdf:type schema:PublicationVolume
    97 N330415a2f1ac40969038e6002d250eec schema:name doi
    98 schema:value 10.1007/s00138-021-01243-0
    99 rdf:type schema:PropertyValue
    100 N4219fbe46a214dcdb92251da5dc2b651 schema:issueNumber 6
    101 rdf:type schema:PublicationIssue
    102 N522feb69555c4aa882d13dc72e8ae857 rdf:first sg:person.010456660353.19
    103 rdf:rest N88a61dfaf1ca42b8bc0dcef6b7adfb05
    104 N88a61dfaf1ca42b8bc0dcef6b7adfb05 rdf:first sg:person.01144514770.23
    105 rdf:rest rdf:nil
    106 N9ee1ac08dc2c4b28a6c508e14b35eef8 rdf:first sg:person.07457326010.11
    107 rdf:rest N522feb69555c4aa882d13dc72e8ae857
    108 Na655affe6dfa474ba3fb649b25a027e2 schema:name dimensions_id
    109 schema:value pub.1141079119
    110 rdf:type schema:PropertyValue
    111 Na8956548fbbb4332a797cc14dcbb2b8a rdf:first sg:person.016366046350.51
    112 rdf:rest N9ee1ac08dc2c4b28a6c508e14b35eef8
    113 Nb16a6f7778274bd3b03c3d95674cf4ef schema:name Springer Nature - SN SciGraph project
    114 rdf:type schema:Organization
    115 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Information and Computing Sciences
    117 rdf:type schema:DefinedTerm
    118 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Artificial Intelligence and Image Processing
    120 rdf:type schema:DefinedTerm
    121 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Computation Theory and Mathematics
    123 rdf:type schema:DefinedTerm
    124 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Psychology and Cognitive Sciences
    126 rdf:type schema:DefinedTerm
    127 anzsrc-for:1702 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Cognitive Sciences
    129 rdf:type schema:DefinedTerm
    130 sg:journal.1045266 schema:issn 0932-8092
    131 1432-1769
    132 schema:name Machine Vision and Applications
    133 schema:publisher Springer Nature
    134 rdf:type schema:Periodical
    135 sg:person.010456660353.19 schema:affiliation grid-institutes:grid.411851.8
    136 schema:familyName Yang
    137 schema:givenName Zhenguo
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010456660353.19
    139 rdf:type schema:Person
    140 sg:person.01144514770.23 schema:affiliation grid-institutes:grid.508161.b
    141 schema:familyName Liu
    142 schema:givenName Wenyin
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144514770.23
    144 rdf:type schema:Person
    145 sg:person.016366046350.51 schema:affiliation grid-institutes:grid.411851.8
    146 schema:familyName Liao
    147 schema:givenName Yongwei
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016366046350.51
    149 rdf:type schema:Person
    150 sg:person.07457326010.11 schema:affiliation grid-institutes:grid.411851.8
    151 schema:familyName Lu
    152 schema:givenName Siwei
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07457326010.11
    154 rdf:type schema:Person
    155 sg:pub.10.1007/978-3-030-01264-9_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107502755
    156 https://doi.org/10.1007/978-3-030-01264-9_8
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/978-3-319-10602-1_48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045321436
    159 https://doi.org/10.1007/978-3-319-10602-1_48
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/978-3-319-46448-0_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017177111
    162 https://doi.org/10.1007/978-3-319-46448-0_2
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/978-3-7908-2604-3_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017229575
    165 https://doi.org/10.1007/978-3-7908-2604-3_16
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/978-981-10-7305-2_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099621118
    168 https://doi.org/10.1007/978-981-10-7305-2_15
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s00138-018-0929-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103196465
    171 https://doi.org/10.1007/s00138-018-0929-8
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s00138-018-0995-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1110448579
    174 https://doi.org/10.1007/s00138-018-0995-y
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s00138-019-01023-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1112941994
    177 https://doi.org/10.1007/s00138-019-01023-x
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/s00138-019-01052-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123948577
    180 https://doi.org/10.1007/s00138-019-01052-6
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/s00138-020-01065-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125901951
    183 https://doi.org/10.1007/s00138-020-01065-6
    184 rdf:type schema:CreativeWork
    185 grid-institutes:grid.411851.8 schema:alternateName School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China
    186 schema:name School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China
    187 rdf:type schema:Organization
    188 grid-institutes:grid.508161.b schema:alternateName Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen, China
    189 schema:name Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen, China
    190 School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China
    191 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...