Detection of inclusion by using 3D laser scanner in composite prepreg manufacturing technique using convolutional neural networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-09-21

AUTHORS

M. J. Augustin, Vandana Ramesh, R. Krishna Prasad, Nitesh Gupta, M. Ramesh Kumar

ABSTRACT

Among different manufacturing techniques available for composite aircraft structures, prepreg-based manual layup is widely used. During the fabrication process, the protective films of the prepregs or other materials used in the process could get inside as a foreign object between the layers. The present method of finding the inclusions during the prepreg layup is by visual inspection in the cleanroom. Carrying out visual inspection is challenging as the layup is usually carried out on large surfaces and reflective by nature. This paper proposes a 3D laser scanner-based approach for the detection of inclusion on flat and curved surfaces. Using the portable laser scanner, the surfaces of each layer are scanned and compared the resulting point clouds using with a reference layer data. Thicknesses between two surfaces are computed with Cloud to Cloud, Mesh to Cloud and Hausdorff distance to enhance the visibility of inclusions. It was found that this approach could enhance the visibility of inclusions over 50 micron and above. These enhanced features are used to train a multiview convolutional neural network to mark the inclusion regions, which can aid the inspector to identify the inclusion regions in a fast and efficient way. More... »

PAGES

117

References to SciGraph publications

  • 2003-12. Stereo vision system for precision dimensional inspection of 3D holes in MACHINE VISION AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00138-021-01241-2

    DOI

    http://dx.doi.org/10.1007/s00138-021-01241-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1141273311


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Aerospace Laboratories CSIR, Bangalore, India", 
              "id": "http://www.grid.ac/institutes/grid.462641.3", 
              "name": [
                "National Aerospace Laboratories CSIR, Bangalore, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Augustin", 
            "givenName": "M. J.", 
            "id": "sg:person.016105362036.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016105362036.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Aerospace Laboratories CSIR, Bangalore, India", 
              "id": "http://www.grid.ac/institutes/grid.462641.3", 
              "name": [
                "National Aerospace Laboratories CSIR, Bangalore, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ramesh", 
            "givenName": "Vandana", 
            "id": "sg:person.016104537401.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016104537401.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Aerospace Laboratories CSIR, Bangalore, India", 
              "id": "http://www.grid.ac/institutes/grid.462641.3", 
              "name": [
                "National Aerospace Laboratories CSIR, Bangalore, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Prasad", 
            "givenName": "R. Krishna", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Aerospace Laboratories CSIR, Bangalore, India", 
              "id": "http://www.grid.ac/institutes/grid.462641.3", 
              "name": [
                "National Aerospace Laboratories CSIR, Bangalore, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gupta", 
            "givenName": "Nitesh", 
            "id": "sg:person.010207276603.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010207276603.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Aerospace Laboratories CSIR, Bangalore, India", 
              "id": "http://www.grid.ac/institutes/grid.462641.3", 
              "name": [
                "National Aerospace Laboratories CSIR, Bangalore, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kumar", 
            "givenName": "M. Ramesh", 
            "id": "sg:person.012373231301.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012373231301.51"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00138-003-0132-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022331956", 
              "https://doi.org/10.1007/s00138-003-0132-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-09-21", 
        "datePublishedReg": "2021-09-21", 
        "description": "Among different manufacturing techniques available for composite aircraft structures, prepreg-based manual layup is widely used. During the fabrication process, the protective films of the prepregs or other materials used in the process could get inside as a foreign object between the layers. The present method of finding the inclusions during the prepreg layup is by visual inspection in the cleanroom. Carrying out visual inspection is challenging as the layup is usually carried out on large surfaces and reflective by nature. This paper proposes a 3D laser scanner-based approach for the detection of inclusion on flat and curved surfaces. Using the portable laser scanner, the surfaces of each layer are scanned and compared the resulting point clouds using with a reference layer data. Thicknesses between two surfaces are computed with Cloud to Cloud, Mesh to Cloud and Hausdorff distance to enhance the visibility of inclusions. It was found that this approach could enhance the visibility of inclusions over 50 micron and above. These enhanced features are used to train a multiview convolutional neural network to mark the inclusion regions, which can aid the inspector to identify the inclusion regions in a fast and efficient way.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00138-021-01241-2", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1045266", 
            "issn": [
              "0932-8092", 
              "1432-1769"
            ], 
            "name": "Machine Vision and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "32"
          }
        ], 
        "keywords": [
          "manufacturing techniques", 
          "composite aircraft structures", 
          "detection of inclusions", 
          "different manufacturing techniques", 
          "laser scanner", 
          "manual layup", 
          "aircraft structures", 
          "prepreg layup", 
          "fabrication process", 
          "portable laser scanner", 
          "protective film", 
          "layup", 
          "curved surfaces", 
          "large surface", 
          "layer data", 
          "visual inspection", 
          "surface", 
          "inclusion regions", 
          "present method", 
          "layer", 
          "neural network", 
          "prepreg", 
          "point clouds", 
          "enhanced features", 
          "convolutional neural network", 
          "efficient way", 
          "inspection", 
          "cleanroom", 
          "films", 
          "foreign objects", 
          "thickness", 
          "materials", 
          "technique", 
          "process", 
          "scanner", 
          "microns", 
          "network", 
          "multiview convolutional neural networks", 
          "structure", 
          "cloud", 
          "detection", 
          "approach", 
          "method", 
          "inclusion", 
          "region", 
          "distance", 
          "inspectors", 
          "visibility", 
          "objects", 
          "features", 
          "way", 
          "nature", 
          "data", 
          "Hausdorff distance", 
          "paper"
        ], 
        "name": "Detection of inclusion by using 3D laser scanner in composite prepreg manufacturing technique using convolutional neural networks", 
        "pagination": "117", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1141273311"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00138-021-01241-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00138-021-01241-2", 
          "https://app.dimensions.ai/details/publication/pub.1141273311"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_899.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00138-021-01241-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00138-021-01241-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00138-021-01241-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00138-021-01241-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00138-021-01241-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    144 TRIPLES      22 PREDICATES      81 URIs      72 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00138-021-01241-2 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N4ceafc0e69bf44f6bff8c7ba27492356
    4 schema:citation sg:pub.10.1007/s00138-003-0132-3
    5 schema:datePublished 2021-09-21
    6 schema:datePublishedReg 2021-09-21
    7 schema:description Among different manufacturing techniques available for composite aircraft structures, prepreg-based manual layup is widely used. During the fabrication process, the protective films of the prepregs or other materials used in the process could get inside as a foreign object between the layers. The present method of finding the inclusions during the prepreg layup is by visual inspection in the cleanroom. Carrying out visual inspection is challenging as the layup is usually carried out on large surfaces and reflective by nature. This paper proposes a 3D laser scanner-based approach for the detection of inclusion on flat and curved surfaces. Using the portable laser scanner, the surfaces of each layer are scanned and compared the resulting point clouds using with a reference layer data. Thicknesses between two surfaces are computed with Cloud to Cloud, Mesh to Cloud and Hausdorff distance to enhance the visibility of inclusions. It was found that this approach could enhance the visibility of inclusions over 50 micron and above. These enhanced features are used to train a multiview convolutional neural network to mark the inclusion regions, which can aid the inspector to identify the inclusion regions in a fast and efficient way.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf Ncc8397eac8874675872c3ffc97d2a4a1
    12 Ndcf9ae0348574201aa533c6d41817360
    13 sg:journal.1045266
    14 schema:keywords Hausdorff distance
    15 aircraft structures
    16 approach
    17 cleanroom
    18 cloud
    19 composite aircraft structures
    20 convolutional neural network
    21 curved surfaces
    22 data
    23 detection
    24 detection of inclusions
    25 different manufacturing techniques
    26 distance
    27 efficient way
    28 enhanced features
    29 fabrication process
    30 features
    31 films
    32 foreign objects
    33 inclusion
    34 inclusion regions
    35 inspection
    36 inspectors
    37 large surface
    38 laser scanner
    39 layer
    40 layer data
    41 layup
    42 manual layup
    43 manufacturing techniques
    44 materials
    45 method
    46 microns
    47 multiview convolutional neural networks
    48 nature
    49 network
    50 neural network
    51 objects
    52 paper
    53 point clouds
    54 portable laser scanner
    55 prepreg
    56 prepreg layup
    57 present method
    58 process
    59 protective film
    60 region
    61 scanner
    62 structure
    63 surface
    64 technique
    65 thickness
    66 visibility
    67 visual inspection
    68 way
    69 schema:name Detection of inclusion by using 3D laser scanner in composite prepreg manufacturing technique using convolutional neural networks
    70 schema:pagination 117
    71 schema:productId Nbb35ebda357c4db9969d4e7703cd3b27
    72 Nf0730fe580a34c918b31d7dd5254bdcf
    73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141273311
    74 https://doi.org/10.1007/s00138-021-01241-2
    75 schema:sdDatePublished 2022-05-20T07:39
    76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    77 schema:sdPublisher Na39e2e114c5b452bb725d85a284e592a
    78 schema:url https://doi.org/10.1007/s00138-021-01241-2
    79 sgo:license sg:explorer/license/
    80 sgo:sdDataset articles
    81 rdf:type schema:ScholarlyArticle
    82 N1e4627b481c341bbbff8fcf8d11e3c42 rdf:first sg:person.012373231301.51
    83 rdf:rest rdf:nil
    84 N4ceafc0e69bf44f6bff8c7ba27492356 rdf:first sg:person.016105362036.43
    85 rdf:rest N6e5574d5ef6e4a4790eb5bf7b35f296c
    86 N6e5574d5ef6e4a4790eb5bf7b35f296c rdf:first sg:person.016104537401.99
    87 rdf:rest N7d61594dbf01481ca8104743912aa72e
    88 N7d61594dbf01481ca8104743912aa72e rdf:first Nedf0dfad249045338e48bd0d34b9265f
    89 rdf:rest Ne35ec1ef1462482c87e5b8a4ca5405ab
    90 Na39e2e114c5b452bb725d85a284e592a schema:name Springer Nature - SN SciGraph project
    91 rdf:type schema:Organization
    92 Nbb35ebda357c4db9969d4e7703cd3b27 schema:name doi
    93 schema:value 10.1007/s00138-021-01241-2
    94 rdf:type schema:PropertyValue
    95 Ncc8397eac8874675872c3ffc97d2a4a1 schema:volumeNumber 32
    96 rdf:type schema:PublicationVolume
    97 Ndcf9ae0348574201aa533c6d41817360 schema:issueNumber 6
    98 rdf:type schema:PublicationIssue
    99 Ne35ec1ef1462482c87e5b8a4ca5405ab rdf:first sg:person.010207276603.40
    100 rdf:rest N1e4627b481c341bbbff8fcf8d11e3c42
    101 Nedf0dfad249045338e48bd0d34b9265f schema:affiliation grid-institutes:grid.462641.3
    102 schema:familyName Prasad
    103 schema:givenName R. Krishna
    104 rdf:type schema:Person
    105 Nf0730fe580a34c918b31d7dd5254bdcf schema:name dimensions_id
    106 schema:value pub.1141273311
    107 rdf:type schema:PropertyValue
    108 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Information and Computing Sciences
    110 rdf:type schema:DefinedTerm
    111 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Artificial Intelligence and Image Processing
    113 rdf:type schema:DefinedTerm
    114 sg:journal.1045266 schema:issn 0932-8092
    115 1432-1769
    116 schema:name Machine Vision and Applications
    117 schema:publisher Springer Nature
    118 rdf:type schema:Periodical
    119 sg:person.010207276603.40 schema:affiliation grid-institutes:grid.462641.3
    120 schema:familyName Gupta
    121 schema:givenName Nitesh
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010207276603.40
    123 rdf:type schema:Person
    124 sg:person.012373231301.51 schema:affiliation grid-institutes:grid.462641.3
    125 schema:familyName Kumar
    126 schema:givenName M. Ramesh
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012373231301.51
    128 rdf:type schema:Person
    129 sg:person.016104537401.99 schema:affiliation grid-institutes:grid.462641.3
    130 schema:familyName Ramesh
    131 schema:givenName Vandana
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016104537401.99
    133 rdf:type schema:Person
    134 sg:person.016105362036.43 schema:affiliation grid-institutes:grid.462641.3
    135 schema:familyName Augustin
    136 schema:givenName M. J.
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016105362036.43
    138 rdf:type schema:Person
    139 sg:pub.10.1007/s00138-003-0132-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022331956
    140 https://doi.org/10.1007/s00138-003-0132-3
    141 rdf:type schema:CreativeWork
    142 grid-institutes:grid.462641.3 schema:alternateName National Aerospace Laboratories CSIR, Bangalore, India
    143 schema:name National Aerospace Laboratories CSIR, Bangalore, India
    144 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...