Affordable person detection in omnidirectional cameras using radial integral channel features View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-18

AUTHORS

Barış Evrim Demiröz, Albert Ali Salah, Yalin Bastanlar, Lale Akarun

ABSTRACT

Omnidirectional cameras cover more ground than perspective cameras, at the expense of resolution. Their comprehensive field of view makes omnidirectional cameras appealing for security and ambient intelligence applications. Person detection is usually a core part of such applications. Conventional methods fail for omnidirectional images due to different image geometry and formation. In this study, we propose a method for person detection in omnidirectional images, which is based on the integral channel features approach. Features are extracted from various channels, such as LUV and gradient magnitude, and classified using boosted decision trees. Features are pixel sums inside annular sectors (doughnut slice shapes) contained by the detection window. We also propose a novel data structure called radial integral image that allows to calculate sums inside annular sectors efficiently. We have shown with experiments that our method outperforms the previous state of the art and uses significantly less computational resources. More... »

PAGES

1-11

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00138-019-01016-w

DOI

http://dx.doi.org/10.1007/s00138-019-01016-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112856234


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bo\u011fazi\u00e7i University", 
          "id": "https://www.grid.ac/institutes/grid.11220.30", 
          "name": [
            "Computer Engineering Department, Bo\u011fazi\u00e7i University, 34342, Istanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Demir\u00f6z", 
        "givenName": "Bar\u0131\u015f Evrim", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Utrecht University", 
          "id": "https://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Computer Engineering Department, Bo\u011fazi\u00e7i University, 34342, Istanbul, Turkey", 
            "Department of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salah", 
        "givenName": "Albert Ali", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Izmir Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.419609.3", 
          "name": [
            "Department of Computer Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bastanlar", 
        "givenName": "Yalin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bo\u011fazi\u00e7i University", 
          "id": "https://www.grid.ac/institutes/grid.11220.30", 
          "name": [
            "Computer Engineering Department, Bo\u011fazi\u00e7i University, 34342, Istanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akarun", 
        "givenName": "Lale", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1117/1.3660573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005499962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-46448-0_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017177111", 
          "https://doi.org/10.1007/978-3-319-46448-0_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88693-8_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031198291", 
          "https://doi.org/10.1007/978-3-540-88693-8_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88693-8_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031198291", 
          "https://doi.org/10.1007/978-3-540-88693-8_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10851-010-0258-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037506694", 
          "https://doi.org/10.1007/s10851-010-0258-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-46475-6_28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039382671", 
          "https://doi.org/10.1007/978-3-319-46475-6_28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/358841.358850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040442112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11760-015-0768-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046433821", 
          "https://doi.org/10.1007/s11760-015-0768-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45053-x_29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050209901", 
          "https://doi.org/10.1007/3-540-45053-x_29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:visi.0000029664.99615.94", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052687286", 
          "https://doi.org/10.1023/b:visi.0000029664.99615.94"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s150716804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053025036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2017.2648850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061576972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2008.75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2009.167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2011.155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tro.2012.2184952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061785365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijista.2009.025105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067467111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2017.2694224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085304158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00371-017-1408-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085607221", 
          "https://doi.org/10.1007/s00371-017-1408-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00371-017-1408-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085607221", 
          "https://doi.org/10.1007/s00371-017-1408-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2001.990517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093187020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/siu.2014.6830225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093756427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.2007.4399311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093837010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093997066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2011.6126420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094098147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2016.141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094200410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2014.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094727707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2013.257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094938111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdsc.2009.5289407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094956301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2013.470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095026533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2013.470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095026533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2006.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095198604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.2006.1641769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095204122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsmc.2009.5345895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095353270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2010.5650845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095441863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdsc.2009.5289406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095739460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2016.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095811486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5244/c.23.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099325712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5244/c.24.68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099341273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wacv.2018.00122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103847588"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-18", 
    "datePublishedReg": "2019-03-18", 
    "description": "Omnidirectional cameras cover more ground than perspective cameras, at the expense of resolution. Their comprehensive field of view makes omnidirectional cameras appealing for security and ambient intelligence applications. Person detection is usually a core part of such applications. Conventional methods fail for omnidirectional images due to different image geometry and formation. In this study, we propose a method for person detection in omnidirectional images, which is based on the integral channel features approach. Features are extracted from various channels, such as LUV and gradient magnitude, and classified using boosted decision trees. Features are pixel sums inside annular sectors (doughnut slice shapes) contained by the detection window. We also propose a novel data structure called radial integral image that allows to calculate sums inside annular sectors efficiently. We have shown with experiments that our method outperforms the previous state of the art and uses significantly less computational resources.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00138-019-01016-w", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1045266", 
        "issn": [
          "0932-8092", 
          "1432-1769"
        ], 
        "name": "Machine Vision and Applications", 
        "type": "Periodical"
      }
    ], 
    "name": "Affordable person detection in omnidirectional cameras using radial integral channel features", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b2bb207fee367fc34fa2006a8572d08d70aa3490d4fe8f818dcb4f99dd9d8338"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00138-019-01016-w"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112856234"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00138-019-01016-w", 
      "https://app.dimensions.ai/details/publication/pub.1112856234"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54008_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00138-019-01016-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00138-019-01016-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00138-019-01016-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00138-019-01016-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00138-019-01016-w'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      21 PREDICATES      61 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00138-019-01016-w schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N446000910bea4ea491199dcac173ac3d
4 schema:citation sg:pub.10.1007/3-540-45053-x_29
5 sg:pub.10.1007/978-3-319-46448-0_2
6 sg:pub.10.1007/978-3-319-46475-6_28
7 sg:pub.10.1007/978-3-540-88693-8_8
8 sg:pub.10.1007/s00371-017-1408-3
9 sg:pub.10.1007/s10851-010-0258-7
10 sg:pub.10.1007/s11760-015-0768-2
11 sg:pub.10.1023/b:visi.0000029664.99615.94
12 https://doi.org/10.1109/cvpr.2001.990517
13 https://doi.org/10.1109/cvpr.2005.177
14 https://doi.org/10.1109/cvpr.2006.119
15 https://doi.org/10.1109/cvpr.2013.470
16 https://doi.org/10.1109/cvpr.2014.81
17 https://doi.org/10.1109/cvpr.2016.141
18 https://doi.org/10.1109/cvpr.2016.91
19 https://doi.org/10.1109/iccv.2011.6126420
20 https://doi.org/10.1109/iccv.2013.257
21 https://doi.org/10.1109/icdsc.2009.5289406
22 https://doi.org/10.1109/icdsc.2009.5289407
23 https://doi.org/10.1109/icip.2010.5650845
24 https://doi.org/10.1109/icsmc.2009.5345895
25 https://doi.org/10.1109/iros.2007.4399311
26 https://doi.org/10.1109/robot.2006.1641769
27 https://doi.org/10.1109/siu.2014.6830225
28 https://doi.org/10.1109/tcsvt.2017.2648850
29 https://doi.org/10.1109/tip.2017.2694224
30 https://doi.org/10.1109/tpami.2008.75
31 https://doi.org/10.1109/tpami.2009.167
32 https://doi.org/10.1109/tpami.2011.155
33 https://doi.org/10.1109/tro.2012.2184952
34 https://doi.org/10.1109/wacv.2018.00122
35 https://doi.org/10.1117/1.3660573
36 https://doi.org/10.1145/358841.358850
37 https://doi.org/10.1504/ijista.2009.025105
38 https://doi.org/10.3390/s150716804
39 https://doi.org/10.5244/c.23.91
40 https://doi.org/10.5244/c.24.68
41 schema:datePublished 2019-03-18
42 schema:datePublishedReg 2019-03-18
43 schema:description Omnidirectional cameras cover more ground than perspective cameras, at the expense of resolution. Their comprehensive field of view makes omnidirectional cameras appealing for security and ambient intelligence applications. Person detection is usually a core part of such applications. Conventional methods fail for omnidirectional images due to different image geometry and formation. In this study, we propose a method for person detection in omnidirectional images, which is based on the integral channel features approach. Features are extracted from various channels, such as LUV and gradient magnitude, and classified using boosted decision trees. Features are pixel sums inside annular sectors (doughnut slice shapes) contained by the detection window. We also propose a novel data structure called radial integral image that allows to calculate sums inside annular sectors efficiently. We have shown with experiments that our method outperforms the previous state of the art and uses significantly less computational resources.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf sg:journal.1045266
48 schema:name Affordable person detection in omnidirectional cameras using radial integral channel features
49 schema:pagination 1-11
50 schema:productId N48922164d161441aa54d398b8a4b7747
51 Nb518db4f13b74e7aa4b2f4048542a03a
52 Nc06f79fbdbce405db4080ae7d793b685
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112856234
54 https://doi.org/10.1007/s00138-019-01016-w
55 schema:sdDatePublished 2019-04-11T12:14
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Nf6a49b7436fb48afb51860189ece63ea
58 schema:url https://link.springer.com/10.1007%2Fs00138-019-01016-w
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N446000910bea4ea491199dcac173ac3d rdf:first Nf6f121bf5f9b4e0f82fc2735fcd4082f
63 rdf:rest Nafbd33e238cf4bed9aee0f1a33e7ec13
64 N44c5582f73ce4f1fa75762300ed150c9 rdf:first Nb6981cc38ef448e585b5d2cc19d004a6
65 rdf:rest rdf:nil
66 N48922164d161441aa54d398b8a4b7747 schema:name doi
67 schema:value 10.1007/s00138-019-01016-w
68 rdf:type schema:PropertyValue
69 N9c4a3fadb068476ea5bd851cb7c570f6 schema:affiliation https://www.grid.ac/institutes/grid.5477.1
70 schema:familyName Salah
71 schema:givenName Albert Ali
72 rdf:type schema:Person
73 Nafbd33e238cf4bed9aee0f1a33e7ec13 rdf:first N9c4a3fadb068476ea5bd851cb7c570f6
74 rdf:rest Nd2006698c56a4dd3a8f0562222df7174
75 Nb518db4f13b74e7aa4b2f4048542a03a schema:name dimensions_id
76 schema:value pub.1112856234
77 rdf:type schema:PropertyValue
78 Nb6981cc38ef448e585b5d2cc19d004a6 schema:affiliation https://www.grid.ac/institutes/grid.11220.30
79 schema:familyName Akarun
80 schema:givenName Lale
81 rdf:type schema:Person
82 Nc06f79fbdbce405db4080ae7d793b685 schema:name readcube_id
83 schema:value b2bb207fee367fc34fa2006a8572d08d70aa3490d4fe8f818dcb4f99dd9d8338
84 rdf:type schema:PropertyValue
85 Nd2006698c56a4dd3a8f0562222df7174 rdf:first Nfa95485349514f06855188e4f47be4eb
86 rdf:rest N44c5582f73ce4f1fa75762300ed150c9
87 Nf6a49b7436fb48afb51860189ece63ea schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Nf6f121bf5f9b4e0f82fc2735fcd4082f schema:affiliation https://www.grid.ac/institutes/grid.11220.30
90 schema:familyName Demiröz
91 schema:givenName Barış Evrim
92 rdf:type schema:Person
93 Nfa95485349514f06855188e4f47be4eb schema:affiliation https://www.grid.ac/institutes/grid.419609.3
94 schema:familyName Bastanlar
95 schema:givenName Yalin
96 rdf:type schema:Person
97 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
98 schema:name Information and Computing Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
101 schema:name Artificial Intelligence and Image Processing
102 rdf:type schema:DefinedTerm
103 sg:journal.1045266 schema:issn 0932-8092
104 1432-1769
105 schema:name Machine Vision and Applications
106 rdf:type schema:Periodical
107 sg:pub.10.1007/3-540-45053-x_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050209901
108 https://doi.org/10.1007/3-540-45053-x_29
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/978-3-319-46448-0_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017177111
111 https://doi.org/10.1007/978-3-319-46448-0_2
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/978-3-319-46475-6_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039382671
114 https://doi.org/10.1007/978-3-319-46475-6_28
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/978-3-540-88693-8_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031198291
117 https://doi.org/10.1007/978-3-540-88693-8_8
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s00371-017-1408-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085607221
120 https://doi.org/10.1007/s00371-017-1408-3
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s10851-010-0258-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037506694
123 https://doi.org/10.1007/s10851-010-0258-7
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s11760-015-0768-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046433821
126 https://doi.org/10.1007/s11760-015-0768-2
127 rdf:type schema:CreativeWork
128 sg:pub.10.1023/b:visi.0000029664.99615.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052687286
129 https://doi.org/10.1023/b:visi.0000029664.99615.94
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/cvpr.2001.990517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093187020
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/cvpr.2005.177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093997066
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/cvpr.2006.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095198604
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/cvpr.2013.470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095026533
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/cvpr.2014.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094727707
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/cvpr.2016.141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094200410
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/cvpr.2016.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095811486
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/iccv.2011.6126420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094098147
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/iccv.2013.257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094938111
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/icdsc.2009.5289406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095739460
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/icdsc.2009.5289407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094956301
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/icip.2010.5650845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095441863
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/icsmc.2009.5345895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095353270
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/iros.2007.4399311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093837010
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/robot.2006.1641769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095204122
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/siu.2014.6830225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093756427
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/tcsvt.2017.2648850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061576972
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/tip.2017.2694224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085304158
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/tpami.2008.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743671
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/tpami.2009.167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743745
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/tpami.2011.155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744049
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/tro.2012.2184952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061785365
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/wacv.2018.00122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103847588
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1117/1.3660573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005499962
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1145/358841.358850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040442112
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1504/ijista.2009.025105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067467111
182 rdf:type schema:CreativeWork
183 https://doi.org/10.3390/s150716804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053025036
184 rdf:type schema:CreativeWork
185 https://doi.org/10.5244/c.23.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099325712
186 rdf:type schema:CreativeWork
187 https://doi.org/10.5244/c.24.68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099341273
188 rdf:type schema:CreativeWork
189 https://www.grid.ac/institutes/grid.11220.30 schema:alternateName Boğaziçi University
190 schema:name Computer Engineering Department, Boğaziçi University, 34342, Istanbul, Turkey
191 rdf:type schema:Organization
192 https://www.grid.ac/institutes/grid.419609.3 schema:alternateName Izmir Institute of Technology
193 schema:name Department of Computer Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
194 rdf:type schema:Organization
195 https://www.grid.ac/institutes/grid.5477.1 schema:alternateName Utrecht University
196 schema:name Computer Engineering Department, Boğaziçi University, 34342, Istanbul, Turkey
197 Department of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands
198 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...