Circulating biomarkers may be unable to detect infection at the early phase of sepsis in ICU patients: the CAPTAIN prospective ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06-30

AUTHORS

Marianna Parlato, François Philippart, Alexandra Rouquette, Virginie Moucadel, Virginie Puchois, Sophie Blein, Jean-Pierre Bedos, Jean-Luc Diehl, Olfa Hamzaoui, Djillali Annane, Didier Journois, Myriam Ben Boutieb, Laurent Estève, Catherine Fitting, Jean-Marc Treluyer, Alexandre Pachot, Minou Adib-Conquy, Jean-Marc Cavaillon, Benoît Misset, The Captain Study Group

ABSTRACT

PurposeSepsis and non-septic systemic inflammatory response syndrome (SIRS) are the same syndromes, differing by their cause, sepsis being secondary to microbial infection. Microbiological tests are not enough to detect infection early. While more than 50 biomarkers have been proposed to detect infection, none have been repeatedly validated.AimTo assess the accuracy of circulating biomarkers to discriminate between sepsis and non-septic SIRS.MethodsThe CAPTAIN study was a prospective observational multicenter cohort of 279 ICU patients with hypo- or hyperthermia and criteria of SIRS, included at the time the attending physician considered antimicrobial therapy. Investigators collected blood at inclusion to measure 29 plasma compounds and ten whole blood RNAs, and—for those patients included within working hours—14 leukocyte surface markers. Patients were classified as having sepsis or non-septic SIRS blindly to the biomarkers results. We used the LASSO method as the technique of multivariate analysis, because of the large number of biomarkers.ResultsDuring the study period, 363 patients with SIRS were screened, 84 having exclusion criteria. Ninety-one patients were classified as having non-septic SIRS and 188 as having sepsis. Eight biomarkers had an area under the receiver operating curve (ROC-AUC) over 0.6 with a 95% confidence interval over 0.5. LASSO regression identified CRP and HLA-DRA mRNA as being repeatedly associated with sepsis, and no model performed better than CRP alone (ROC-AUC 0.76 [0.68–0.84]).ConclusionsThe circulating biomarkers tested were found to discriminate poorly between sepsis and non-septic SIRS, and no combination performed better than CRP alone. More... »

PAGES

1061-1070

References to SciGraph publications

  • 2016-11-06. Septic shock with no diagnosis at 24 hours: a pragmatic multicenter prospective cohort study in CRITICAL CARE
  • 2016-02-24. Plasma levels of danger-associated molecular patterns are associated with immune suppression in trauma patients in INTENSIVE CARE MEDICINE
  • 2017-01-18. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016 in INTENSIVE CARE MEDICINE
  • 2014-09-24. Host Response Biomarkers in the Diagnosis of Sepsis: A General Overview in SEPSIS
  • 2001-12-04. Epidemiology of sepsis and infection in ICU patients from an international multicentre cohort study in INTENSIVE CARE MEDICINE
  • 2007-03-16. Use of plasma C-reactive protein, procalcitonin, neutrophils, macrophage migration inhibitory factor, soluble urokinase-type plasminogen activator receptor, and soluble triggering receptor expressed on myeloid cells-1 in combination to diagnose infections: a prospective study in CRITICAL CARE
  • 2013-07-08. Role of biomarkers in the management of antibiotic therapy: an expert panel review II: clinical use of biomarkers for initiation or discontinuation of antibiotic therapy in ANNALS OF INTENSIVE CARE
  • 2012-02-04. The sensitivity of neutrophil CD64 expression as a biomarker of bacterial infection is low in critically ill patients in INTENSIVE CARE MEDICINE
  • 2012-09-26. Characteristics and determinants of outcome of hospital-acquired bloodstream infections in intensive care units: the EUROBACT International Cohort Study in INTENSIVE CARE MEDICINE
  • 2014-10-16. Validation of prediction models based on lasso regression with multiply imputed data in BMC MEDICAL RESEARCH METHODOLOGY
  • Journal

    TITLE

    Intensive Care Medicine

    ISSUE

    7

    VOLUME

    44

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00134-018-5228-3

    DOI

    http://dx.doi.org/10.1007/s00134-018-5228-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105213984

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29959455


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomarkers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Diagnosis, Differential", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Intensive Care Units", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sepsis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Systemic Inflammatory Response Syndrome", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Unit Cytokines and Inflammation, Institut Pasteur, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.428999.7", 
              "name": [
                "Unit Cytokines and Inflammation, Institut Pasteur, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Parlato", 
            "givenName": "Marianna", 
            "id": "sg:person.01166424027.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166424027.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Unit\u00e9 Endotoxines Structures et R\u00e9ponse de L\u2019h\u00f4te, D\u00e9partement de Microbiologie, Institut de Biologie Int\u00e9grative de La Cellule, Paris Saclay, Saclay, France", 
              "id": "http://www.grid.ac/institutes/grid.462411.4", 
              "name": [
                "Service de M\u00e9decine Intensive et R\u00e9animation, Groupe Hospitalier Paris Saint-Joseph, Paris, France", 
                "Unit\u00e9 Endotoxines Structures et R\u00e9ponse de L\u2019h\u00f4te, D\u00e9partement de Microbiologie, Institut de Biologie Int\u00e9grative de La Cellule, Paris Saclay, Saclay, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Philippart", 
            "givenName": "Fran\u00e7ois", 
            "id": "sg:person.0667343437.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667343437.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universit\u00e9 Paris Descartes, Paris Sorbonne Cit\u00e9, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.508487.6", 
              "name": [
                "Unit\u00e9 de Biostatistiques et d\u2019Epid\u00e9miologie, H\u00f4pital Hotel-Dieu, Assistance Publique\u2014H\u00f4pitaux de Paris, Paris, France", 
                "Universit\u00e9 Paris Descartes, Paris Sorbonne Cit\u00e9, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rouquette", 
            "givenName": "Alexandra", 
            "id": "sg:person.0612074704.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612074704.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Medical Diagnostic Discovery Department, BioM\u00e9rieux SA, Lyon, France", 
              "id": "http://www.grid.ac/institutes/grid.424167.2", 
              "name": [
                "Medical Diagnostic Discovery Department, BioM\u00e9rieux SA, Lyon, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moucadel", 
            "givenName": "Virginie", 
            "id": "sg:person.0621247364.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621247364.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Unit Cytokines and Inflammation, Institut Pasteur, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.428999.7", 
              "name": [
                "Unit Cytokines and Inflammation, Institut Pasteur, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Puchois", 
            "givenName": "Virginie", 
            "id": "sg:person.01146710741.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146710741.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Medical Diagnostic Discovery Department, BioM\u00e9rieux SA, Lyon, France", 
              "id": "http://www.grid.ac/institutes/grid.424167.2", 
              "name": [
                "Medical Diagnostic Discovery Department, BioM\u00e9rieux SA, Lyon, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Blein", 
            "givenName": "Sophie", 
            "id": "sg:person.016260040121.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016260040121.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Service de R\u00e9animation, H\u00f4pital Andr\u00e9 Mignot, Versailles, France", 
              "id": "http://www.grid.ac/institutes/grid.413766.1", 
              "name": [
                "Service de R\u00e9animation, H\u00f4pital Andr\u00e9 Mignot, Versailles, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bedos", 
            "givenName": "Jean-Pierre", 
            "id": "sg:person.01251245025.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251245025.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "INSERM, UMR S1140, Universit\u00e9 Paris Descartes, Paris Sorbonne Cit\u00e9, Paris, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Service de R\u00e9animation M\u00e9dicale, H\u00f4pital Europ\u00e9en Georges Pompidou, Assistance Publique\u2014H\u00f4pitaux de Paris, Paris, France", 
                "INSERM, UMR S1140, Universit\u00e9 Paris Descartes, Paris Sorbonne Cit\u00e9, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Diehl", 
            "givenName": "Jean-Luc", 
            "id": "sg:person.01356216621.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356216621.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Service de R\u00e9animation, H\u00f4pital Antoine B\u00e9cl\u00e8re, Assistance Publique\u2014H\u00f4pitaux de Paris, Clamart, France", 
              "id": "http://www.grid.ac/institutes/grid.413738.a", 
              "name": [
                "Service de R\u00e9animation, H\u00f4pital Antoine B\u00e9cl\u00e8re, Assistance Publique\u2014H\u00f4pitaux de Paris, Clamart, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hamzaoui", 
            "givenName": "Olfa", 
            "id": "sg:person.0655750112.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655750112.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universit\u00e9 Versailles Saint-Quentin, Versailles, France", 
              "id": "http://www.grid.ac/institutes/grid.12832.3a", 
              "name": [
                "Service de R\u00e9animation, H\u00f4pital Raymond Poincar\u00e9, Assistance Publique\u2014H\u00f4pitaux de Paris, Garches, France", 
                "Universit\u00e9 Versailles Saint-Quentin, Versailles, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Annane", 
            "givenName": "Djillali", 
            "id": "sg:person.01051603547.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051603547.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Service de R\u00e9animation Chirurgicale, H\u00f4pital Europ\u00e9en Georges Pompidou, Assistance Publique\u2014H\u00f4pitaux de Paris, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.414093.b", 
              "name": [
                "Universit\u00e9 Paris Descartes, Paris Sorbonne Cit\u00e9, Paris, France", 
                "Service de R\u00e9animation Chirurgicale, H\u00f4pital Europ\u00e9en Georges Pompidou, Assistance Publique\u2014H\u00f4pitaux de Paris, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Journois", 
            "givenName": "Didier", 
            "id": "sg:person.01171372357.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171372357.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Unit\u00e9 de Biostatistiques et d\u2019Epid\u00e9miologie, H\u00f4pital Hotel-Dieu, Assistance Publique\u2014H\u00f4pitaux de Paris, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.411394.a", 
              "name": [
                "Unit\u00e9 de Biostatistiques et d\u2019Epid\u00e9miologie, H\u00f4pital Hotel-Dieu, Assistance Publique\u2014H\u00f4pitaux de Paris, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ben Boutieb", 
            "givenName": "Myriam", 
            "id": "sg:person.0721475303.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721475303.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Medical Diagnostic Discovery Department, BioM\u00e9rieux SA, Lyon, France", 
              "id": "http://www.grid.ac/institutes/grid.424167.2", 
              "name": [
                "Medical Diagnostic Discovery Department, BioM\u00e9rieux SA, Lyon, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Est\u00e8ve", 
            "givenName": "Laurent", 
            "id": "sg:person.010630266633.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010630266633.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Unit Cytokines and Inflammation, Institut Pasteur, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.428999.7", 
              "name": [
                "Unit Cytokines and Inflammation, Institut Pasteur, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fitting", 
            "givenName": "Catherine", 
            "id": "sg:person.0646537045.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646537045.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Unit\u00e9 de Recherche Clinique, H\u00f4pital Cochin, Assistance Publique\u2014H\u00f4pitaux de Paris, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.411784.f", 
              "name": [
                "Universit\u00e9 Paris Descartes, Paris Sorbonne Cit\u00e9, Paris, France", 
                "Unit\u00e9 de Recherche Clinique, H\u00f4pital Cochin, Assistance Publique\u2014H\u00f4pitaux de Paris, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Treluyer", 
            "givenName": "Jean-Marc", 
            "id": "sg:person.011011303434.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011011303434.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Medical Diagnostic Discovery Department, BioM\u00e9rieux SA, Lyon, France", 
              "id": "http://www.grid.ac/institutes/grid.424167.2", 
              "name": [
                "Medical Diagnostic Discovery Department, BioM\u00e9rieux SA, Lyon, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pachot", 
            "givenName": "Alexandre", 
            "id": "sg:person.01105422662.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105422662.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Unit Cytokines and Inflammation, Institut Pasteur, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.428999.7", 
              "name": [
                "Unit Cytokines and Inflammation, Institut Pasteur, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Adib-Conquy", 
            "givenName": "Minou", 
            "id": "sg:person.01231262007.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231262007.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Unit Cytokines and Inflammation, Institut Pasteur, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.428999.7", 
              "name": [
                "Unit Cytokines and Inflammation, Institut Pasteur, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cavaillon", 
            "givenName": "Jean-Marc", 
            "id": "sg:person.01063215605.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063215605.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Groupe de Recherche sur l\u2019Adaptation Microbienne, Universit\u00e9 de Rouen Normandie, 2656, Rouen, EA, France", 
              "id": "http://www.grid.ac/institutes/grid.10400.35", 
              "name": [
                "Service de M\u00e9decine Intensive et R\u00e9animation, Groupe Hospitalier Paris Saint-Joseph, Paris, France", 
                "Intensive Care Unit, Service de R\u00e9animation M\u00e9dicale, H\u00f4pital Charles Nicolle, H\u00f4pitaux de Rouen, 1 rue de Germont, Rouen, France", 
                "Groupe de Recherche sur l\u2019Adaptation Microbienne, Universit\u00e9 de Rouen Normandie, 2656, Rouen, EA, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Misset", 
            "givenName": "Beno\u00eet", 
            "id": "sg:person.0714512043.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714512043.66"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "The Captain Study Group", 
            "id": "sg:person.013601070147.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013601070147.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/s13054-016-1537-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036790767", 
              "https://doi.org/10.1186/s13054-016-1537-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2288-14-116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039842682", 
              "https://doi.org/10.1186/1471-2288-14-116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2110-5820-3-21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007570782", 
              "https://doi.org/10.1186/2110-5820-3-21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00134-017-4683-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003731534", 
              "https://doi.org/10.1007/s00134-017-4683-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00134-012-2483-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007765668", 
              "https://doi.org/10.1007/s00134-012-2483-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00134-012-2695-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002785702", 
              "https://doi.org/10.1007/s00134-012-2695-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00134-001-1143-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027018720", 
              "https://doi.org/10.1007/s00134-001-1143-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4939-1776-1_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041585639", 
              "https://doi.org/10.1007/978-1-4939-1776-1_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/cc5723", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001948339", 
              "https://doi.org/10.1186/cc5723"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00134-015-4205-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049878234", 
              "https://doi.org/10.1007/s00134-015-4205-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-06-30", 
        "datePublishedReg": "2018-06-30", 
        "description": "PurposeSepsis and non-septic systemic inflammatory response syndrome (SIRS) are the same syndromes, differing by their cause, sepsis being secondary to microbial infection. Microbiological tests are not enough to detect infection early. While more than 50 biomarkers have been proposed to detect infection, none have been repeatedly validated.AimTo assess the accuracy of circulating biomarkers to discriminate between sepsis and non-septic SIRS.MethodsThe CAPTAIN study was a prospective observational multicenter cohort of 279 ICU patients with hypo- or hyperthermia and criteria of SIRS, included at the time the attending physician considered antimicrobial therapy. Investigators collected blood at inclusion to measure 29 plasma compounds and ten whole blood RNAs, and\u2014for those patients included within working hours\u201414 leukocyte surface markers. Patients were classified as having sepsis or non-septic SIRS blindly to the biomarkers results. We used the LASSO method as the technique of multivariate analysis, because of the large number of biomarkers.ResultsDuring the study period, 363 patients with SIRS were screened, 84 having exclusion criteria. Ninety-one patients were classified as having non-septic SIRS and 188 as having sepsis. Eight biomarkers had an area under the receiver operating curve (ROC-AUC) over 0.6 with a 95% confidence interval over 0.5. LASSO regression identified CRP and HLA-DRA mRNA as being repeatedly associated with sepsis, and no model performed better than CRP alone (ROC-AUC 0.76 [0.68\u20130.84]).ConclusionsThe circulating biomarkers tested were found to discriminate poorly between sepsis and non-septic SIRS, and no combination performed better than CRP alone.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00134-018-5228-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1313639", 
            "issn": [
              "0342-4642", 
              "1432-1238"
            ], 
            "name": "Intensive Care Medicine", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "44"
          }
        ], 
        "keywords": [
          "non-septic systemic inflammatory response syndrome", 
          "systemic inflammatory response syndrome", 
          "ICU patients", 
          "criteria of SIRS", 
          "prospective multicenter cohort study", 
          "multicenter cohort study", 
          "inflammatory response syndrome", 
          "leukocyte surface markers", 
          "HLA-DRA mRNA", 
          "whole blood RNA", 
          "response syndrome", 
          "multicenter cohort", 
          "cohort study", 
          "antimicrobial therapy", 
          "sepsis", 
          "exclusion criteria", 
          "patients", 
          "multivariate analysis", 
          "same syndrome", 
          "surface markers", 
          "infection", 
          "blood RNA", 
          "CRP", 
          "study period", 
          "biomarkers", 
          "biomarker results", 
          "microbial infections", 
          "confidence intervals", 
          "plasma compounds", 
          "syndrome", 
          "early phase", 
          "microbiological tests", 
          "PurposeSepsis", 
          "AimTo", 
          "therapy", 
          "cohort", 
          "physicians", 
          "blood", 
          "LASSO regression", 
          "criteria", 
          "study", 
          "hyperthermia", 
          "cause", 
          "markers", 
          "mRNA", 
          "investigators", 
          "regression", 
          "intervals", 
          "RNA", 
          "period", 
          "test", 
          "large number", 
          "LASSO method", 
          "combination", 
          "inclusion", 
          "number", 
          "time", 
          "curves", 
          "analysis", 
          "area", 
          "receiver", 
          "results", 
          "compounds", 
          "technique", 
          "method", 
          "model", 
          "phase", 
          "accuracy"
        ], 
        "name": "Circulating biomarkers may be unable to detect infection at the early phase of sepsis in ICU patients: the CAPTAIN prospective multicenter cohort study", 
        "pagination": "1061-1070", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105213984"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00134-018-5228-3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29959455"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00134-018-5228-3", 
          "https://app.dimensions.ai/details/publication/pub.1105213984"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_761.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00134-018-5228-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00134-018-5228-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00134-018-5228-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00134-018-5228-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00134-018-5228-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    386 TRIPLES      22 PREDICATES      115 URIs      97 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00134-018-5228-3 schema:about N620e0e570adf4ff09a7c1cd8089d5cf8
    2 N634d1823909648e1a28974191d29af89
    3 N783bb4e68e034af2a3508630a22f890f
    4 N8072b9c6f53247b8aa7b9573deb6cb33
    5 N826c9af1485143468f68f19ec439b3c2
    6 Nad9f8bbdce314823810bdead00c7aa9d
    7 Nb0926765408e4f13820d7f18297a98f9
    8 Nb605f17b3a104c319c34f90be1570277
    9 Nb86030be22864e1c998156b68a3c2a52
    10 Nc7fd7da06e4e458380e9994c3f0611d8
    11 Nde1e84a02dde444e9afdb9a0afa03f11
    12 anzsrc-for:11
    13 anzsrc-for:1103
    14 schema:author N03efa44f85b346b5b383adf9b2fd59d7
    15 schema:citation sg:pub.10.1007/978-1-4939-1776-1_15
    16 sg:pub.10.1007/s00134-001-1143-z
    17 sg:pub.10.1007/s00134-012-2483-6
    18 sg:pub.10.1007/s00134-012-2695-9
    19 sg:pub.10.1007/s00134-015-4205-3
    20 sg:pub.10.1007/s00134-017-4683-6
    21 sg:pub.10.1186/1471-2288-14-116
    22 sg:pub.10.1186/2110-5820-3-21
    23 sg:pub.10.1186/cc5723
    24 sg:pub.10.1186/s13054-016-1537-5
    25 schema:datePublished 2018-06-30
    26 schema:datePublishedReg 2018-06-30
    27 schema:description PurposeSepsis and non-septic systemic inflammatory response syndrome (SIRS) are the same syndromes, differing by their cause, sepsis being secondary to microbial infection. Microbiological tests are not enough to detect infection early. While more than 50 biomarkers have been proposed to detect infection, none have been repeatedly validated.AimTo assess the accuracy of circulating biomarkers to discriminate between sepsis and non-septic SIRS.MethodsThe CAPTAIN study was a prospective observational multicenter cohort of 279 ICU patients with hypo- or hyperthermia and criteria of SIRS, included at the time the attending physician considered antimicrobial therapy. Investigators collected blood at inclusion to measure 29 plasma compounds and ten whole blood RNAs, and—for those patients included within working hours—14 leukocyte surface markers. Patients were classified as having sepsis or non-septic SIRS blindly to the biomarkers results. We used the LASSO method as the technique of multivariate analysis, because of the large number of biomarkers.ResultsDuring the study period, 363 patients with SIRS were screened, 84 having exclusion criteria. Ninety-one patients were classified as having non-septic SIRS and 188 as having sepsis. Eight biomarkers had an area under the receiver operating curve (ROC-AUC) over 0.6 with a 95% confidence interval over 0.5. LASSO regression identified CRP and HLA-DRA mRNA as being repeatedly associated with sepsis, and no model performed better than CRP alone (ROC-AUC 0.76 [0.68–0.84]).ConclusionsThe circulating biomarkers tested were found to discriminate poorly between sepsis and non-septic SIRS, and no combination performed better than CRP alone.
    28 schema:genre article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree true
    31 schema:isPartOf N4285888c32154b59b952a7c2c8d4332d
    32 N5510b5a2181c499a82dcccda43796e4a
    33 sg:journal.1313639
    34 schema:keywords AimTo
    35 CRP
    36 HLA-DRA mRNA
    37 ICU patients
    38 LASSO method
    39 LASSO regression
    40 PurposeSepsis
    41 RNA
    42 accuracy
    43 analysis
    44 antimicrobial therapy
    45 area
    46 biomarker results
    47 biomarkers
    48 blood
    49 blood RNA
    50 cause
    51 cohort
    52 cohort study
    53 combination
    54 compounds
    55 confidence intervals
    56 criteria
    57 criteria of SIRS
    58 curves
    59 early phase
    60 exclusion criteria
    61 hyperthermia
    62 inclusion
    63 infection
    64 inflammatory response syndrome
    65 intervals
    66 investigators
    67 large number
    68 leukocyte surface markers
    69 mRNA
    70 markers
    71 method
    72 microbial infections
    73 microbiological tests
    74 model
    75 multicenter cohort
    76 multicenter cohort study
    77 multivariate analysis
    78 non-septic systemic inflammatory response syndrome
    79 number
    80 patients
    81 period
    82 phase
    83 physicians
    84 plasma compounds
    85 prospective multicenter cohort study
    86 receiver
    87 regression
    88 response syndrome
    89 results
    90 same syndrome
    91 sepsis
    92 study
    93 study period
    94 surface markers
    95 syndrome
    96 systemic inflammatory response syndrome
    97 technique
    98 test
    99 therapy
    100 time
    101 whole blood RNA
    102 schema:name Circulating biomarkers may be unable to detect infection at the early phase of sepsis in ICU patients: the CAPTAIN prospective multicenter cohort study
    103 schema:pagination 1061-1070
    104 schema:productId N1fb15abddea8499a92511d5073fb8706
    105 N25c99aec795a45afa359d0414f62cad4
    106 N5a379b9841274dd7859dd5ed7d87aa75
    107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105213984
    108 https://doi.org/10.1007/s00134-018-5228-3
    109 schema:sdDatePublished 2022-06-01T22:17
    110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    111 schema:sdPublisher N25e6b6d6d01e402c9548292ce98fb131
    112 schema:url https://doi.org/10.1007/s00134-018-5228-3
    113 sgo:license sg:explorer/license/
    114 sgo:sdDataset articles
    115 rdf:type schema:ScholarlyArticle
    116 N0338ef38a1f34e4fb38a017f64c20283 rdf:first sg:person.0655750112.52
    117 rdf:rest Nc62ba311ca354c8aae5deddcea09d272
    118 N03efa44f85b346b5b383adf9b2fd59d7 rdf:first sg:person.01166424027.10
    119 rdf:rest N2ce3a271831946d683bd1db342101b70
    120 N1b6953bf405549a8a38201796967e11d rdf:first sg:person.01146710741.25
    121 rdf:rest Nc1c352f4eab744108f1f826b40985c3e
    122 N1fb15abddea8499a92511d5073fb8706 schema:name dimensions_id
    123 schema:value pub.1105213984
    124 rdf:type schema:PropertyValue
    125 N25c99aec795a45afa359d0414f62cad4 schema:name doi
    126 schema:value 10.1007/s00134-018-5228-3
    127 rdf:type schema:PropertyValue
    128 N25e6b6d6d01e402c9548292ce98fb131 schema:name Springer Nature - SN SciGraph project
    129 rdf:type schema:Organization
    130 N2a937d114d0c4686bcff320fb2799be0 rdf:first sg:person.01063215605.37
    131 rdf:rest Nb8f5db2236314651a38220d2628dd3aa
    132 N2ce3a271831946d683bd1db342101b70 rdf:first sg:person.0667343437.67
    133 rdf:rest Nac9c4b6f4ef644cf9369eef905569499
    134 N3654c57d41a64999b3182dae730b7f94 rdf:first sg:person.013601070147.33
    135 rdf:rest rdf:nil
    136 N4285888c32154b59b952a7c2c8d4332d schema:volumeNumber 44
    137 rdf:type schema:PublicationVolume
    138 N42d62e3361e446468e5c6c1514de96fe rdf:first sg:person.01105422662.89
    139 rdf:rest Nd83f487a48b145a980205d705d05b368
    140 N4ba7ddf42bb84fceaa23ffc977ec979c rdf:first sg:person.01251245025.72
    141 rdf:rest N8f0c183003f24b50bef8cc200cec91ff
    142 N5510b5a2181c499a82dcccda43796e4a schema:issueNumber 7
    143 rdf:type schema:PublicationIssue
    144 N5a379b9841274dd7859dd5ed7d87aa75 schema:name pubmed_id
    145 schema:value 29959455
    146 rdf:type schema:PropertyValue
    147 N620e0e570adf4ff09a7c1cd8089d5cf8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Diagnosis, Differential
    149 rdf:type schema:DefinedTerm
    150 N634d1823909648e1a28974191d29af89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Intensive Care Units
    152 rdf:type schema:DefinedTerm
    153 N783bb4e68e034af2a3508630a22f890f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Systemic Inflammatory Response Syndrome
    155 rdf:type schema:DefinedTerm
    156 N8072b9c6f53247b8aa7b9573deb6cb33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Prospective Studies
    158 rdf:type schema:DefinedTerm
    159 N826c9af1485143468f68f19ec439b3c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Humans
    161 rdf:type schema:DefinedTerm
    162 N82ce8b9a360642b2ad1926f475881245 rdf:first sg:person.0621247364.78
    163 rdf:rest N1b6953bf405549a8a38201796967e11d
    164 N8f0c183003f24b50bef8cc200cec91ff rdf:first sg:person.01356216621.41
    165 rdf:rest N0338ef38a1f34e4fb38a017f64c20283
    166 Na62c60b65b864b91820073524a6abaf8 rdf:first sg:person.01171372357.44
    167 rdf:rest Naff9e375d75043fe8410a48d9f1a50eb
    168 Naa24f32477dd4b9da8ff9e8a0aefeac0 rdf:first sg:person.011011303434.22
    169 rdf:rest N42d62e3361e446468e5c6c1514de96fe
    170 Nac9c4b6f4ef644cf9369eef905569499 rdf:first sg:person.0612074704.53
    171 rdf:rest N82ce8b9a360642b2ad1926f475881245
    172 Nad9f8bbdce314823810bdead00c7aa9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Female
    174 rdf:type schema:DefinedTerm
    175 Naff9e375d75043fe8410a48d9f1a50eb rdf:first sg:person.0721475303.03
    176 rdf:rest Nb3087ef47efc43ddb3a05a8d50e5e884
    177 Nb0926765408e4f13820d7f18297a98f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Middle Aged
    179 rdf:type schema:DefinedTerm
    180 Nb3087ef47efc43ddb3a05a8d50e5e884 rdf:first sg:person.010630266633.36
    181 rdf:rest Nd57f853143f440a2bd70ba161fd81855
    182 Nb605f17b3a104c319c34f90be1570277 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Sepsis
    184 rdf:type schema:DefinedTerm
    185 Nb86030be22864e1c998156b68a3c2a52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Biomarkers
    187 rdf:type schema:DefinedTerm
    188 Nb8f5db2236314651a38220d2628dd3aa rdf:first sg:person.0714512043.66
    189 rdf:rest N3654c57d41a64999b3182dae730b7f94
    190 Nc1c352f4eab744108f1f826b40985c3e rdf:first sg:person.016260040121.22
    191 rdf:rest N4ba7ddf42bb84fceaa23ffc977ec979c
    192 Nc62ba311ca354c8aae5deddcea09d272 rdf:first sg:person.01051603547.58
    193 rdf:rest Na62c60b65b864b91820073524a6abaf8
    194 Nc7fd7da06e4e458380e9994c3f0611d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name Male
    196 rdf:type schema:DefinedTerm
    197 Nd57f853143f440a2bd70ba161fd81855 rdf:first sg:person.0646537045.37
    198 rdf:rest Naa24f32477dd4b9da8ff9e8a0aefeac0
    199 Nd83f487a48b145a980205d705d05b368 rdf:first sg:person.01231262007.42
    200 rdf:rest N2a937d114d0c4686bcff320fb2799be0
    201 Nde1e84a02dde444e9afdb9a0afa03f11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    202 schema:name Aged
    203 rdf:type schema:DefinedTerm
    204 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    205 schema:name Medical and Health Sciences
    206 rdf:type schema:DefinedTerm
    207 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    208 schema:name Clinical Sciences
    209 rdf:type schema:DefinedTerm
    210 sg:journal.1313639 schema:issn 0342-4642
    211 1432-1238
    212 schema:name Intensive Care Medicine
    213 schema:publisher Springer Nature
    214 rdf:type schema:Periodical
    215 sg:person.01051603547.58 schema:affiliation grid-institutes:grid.12832.3a
    216 schema:familyName Annane
    217 schema:givenName Djillali
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051603547.58
    219 rdf:type schema:Person
    220 sg:person.010630266633.36 schema:affiliation grid-institutes:grid.424167.2
    221 schema:familyName Estève
    222 schema:givenName Laurent
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010630266633.36
    224 rdf:type schema:Person
    225 sg:person.01063215605.37 schema:affiliation grid-institutes:grid.428999.7
    226 schema:familyName Cavaillon
    227 schema:givenName Jean-Marc
    228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063215605.37
    229 rdf:type schema:Person
    230 sg:person.011011303434.22 schema:affiliation grid-institutes:grid.411784.f
    231 schema:familyName Treluyer
    232 schema:givenName Jean-Marc
    233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011011303434.22
    234 rdf:type schema:Person
    235 sg:person.01105422662.89 schema:affiliation grid-institutes:grid.424167.2
    236 schema:familyName Pachot
    237 schema:givenName Alexandre
    238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105422662.89
    239 rdf:type schema:Person
    240 sg:person.01146710741.25 schema:affiliation grid-institutes:grid.428999.7
    241 schema:familyName Puchois
    242 schema:givenName Virginie
    243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146710741.25
    244 rdf:type schema:Person
    245 sg:person.01166424027.10 schema:affiliation grid-institutes:grid.428999.7
    246 schema:familyName Parlato
    247 schema:givenName Marianna
    248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166424027.10
    249 rdf:type schema:Person
    250 sg:person.01171372357.44 schema:affiliation grid-institutes:grid.414093.b
    251 schema:familyName Journois
    252 schema:givenName Didier
    253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171372357.44
    254 rdf:type schema:Person
    255 sg:person.01231262007.42 schema:affiliation grid-institutes:grid.428999.7
    256 schema:familyName Adib-Conquy
    257 schema:givenName Minou
    258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231262007.42
    259 rdf:type schema:Person
    260 sg:person.01251245025.72 schema:affiliation grid-institutes:grid.413766.1
    261 schema:familyName Bedos
    262 schema:givenName Jean-Pierre
    263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251245025.72
    264 rdf:type schema:Person
    265 sg:person.01356216621.41 schema:affiliation grid-institutes:None
    266 schema:familyName Diehl
    267 schema:givenName Jean-Luc
    268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356216621.41
    269 rdf:type schema:Person
    270 sg:person.013601070147.33 schema:familyName The Captain Study Group
    271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013601070147.33
    272 rdf:type schema:Person
    273 sg:person.016260040121.22 schema:affiliation grid-institutes:grid.424167.2
    274 schema:familyName Blein
    275 schema:givenName Sophie
    276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016260040121.22
    277 rdf:type schema:Person
    278 sg:person.0612074704.53 schema:affiliation grid-institutes:grid.508487.6
    279 schema:familyName Rouquette
    280 schema:givenName Alexandra
    281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612074704.53
    282 rdf:type schema:Person
    283 sg:person.0621247364.78 schema:affiliation grid-institutes:grid.424167.2
    284 schema:familyName Moucadel
    285 schema:givenName Virginie
    286 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621247364.78
    287 rdf:type schema:Person
    288 sg:person.0646537045.37 schema:affiliation grid-institutes:grid.428999.7
    289 schema:familyName Fitting
    290 schema:givenName Catherine
    291 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646537045.37
    292 rdf:type schema:Person
    293 sg:person.0655750112.52 schema:affiliation grid-institutes:grid.413738.a
    294 schema:familyName Hamzaoui
    295 schema:givenName Olfa
    296 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655750112.52
    297 rdf:type schema:Person
    298 sg:person.0667343437.67 schema:affiliation grid-institutes:grid.462411.4
    299 schema:familyName Philippart
    300 schema:givenName François
    301 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667343437.67
    302 rdf:type schema:Person
    303 sg:person.0714512043.66 schema:affiliation grid-institutes:grid.10400.35
    304 schema:familyName Misset
    305 schema:givenName Benoît
    306 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714512043.66
    307 rdf:type schema:Person
    308 sg:person.0721475303.03 schema:affiliation grid-institutes:grid.411394.a
    309 schema:familyName Ben Boutieb
    310 schema:givenName Myriam
    311 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721475303.03
    312 rdf:type schema:Person
    313 sg:pub.10.1007/978-1-4939-1776-1_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041585639
    314 https://doi.org/10.1007/978-1-4939-1776-1_15
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1007/s00134-001-1143-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1027018720
    317 https://doi.org/10.1007/s00134-001-1143-z
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1007/s00134-012-2483-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007765668
    320 https://doi.org/10.1007/s00134-012-2483-6
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1007/s00134-012-2695-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002785702
    323 https://doi.org/10.1007/s00134-012-2695-9
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1007/s00134-015-4205-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049878234
    326 https://doi.org/10.1007/s00134-015-4205-3
    327 rdf:type schema:CreativeWork
    328 sg:pub.10.1007/s00134-017-4683-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003731534
    329 https://doi.org/10.1007/s00134-017-4683-6
    330 rdf:type schema:CreativeWork
    331 sg:pub.10.1186/1471-2288-14-116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039842682
    332 https://doi.org/10.1186/1471-2288-14-116
    333 rdf:type schema:CreativeWork
    334 sg:pub.10.1186/2110-5820-3-21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007570782
    335 https://doi.org/10.1186/2110-5820-3-21
    336 rdf:type schema:CreativeWork
    337 sg:pub.10.1186/cc5723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001948339
    338 https://doi.org/10.1186/cc5723
    339 rdf:type schema:CreativeWork
    340 sg:pub.10.1186/s13054-016-1537-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036790767
    341 https://doi.org/10.1186/s13054-016-1537-5
    342 rdf:type schema:CreativeWork
    343 grid-institutes:None schema:alternateName INSERM, UMR S1140, Université Paris Descartes, Paris Sorbonne Cité, Paris, France
    344 schema:name INSERM, UMR S1140, Université Paris Descartes, Paris Sorbonne Cité, Paris, France
    345 Service de Réanimation Médicale, Hôpital Européen Georges Pompidou, Assistance Publique—Hôpitaux de Paris, Paris, France
    346 rdf:type schema:Organization
    347 grid-institutes:grid.10400.35 schema:alternateName Groupe de Recherche sur l’Adaptation Microbienne, Université de Rouen Normandie, 2656, Rouen, EA, France
    348 schema:name Groupe de Recherche sur l’Adaptation Microbienne, Université de Rouen Normandie, 2656, Rouen, EA, France
    349 Intensive Care Unit, Service de Réanimation Médicale, Hôpital Charles Nicolle, Hôpitaux de Rouen, 1 rue de Germont, Rouen, France
    350 Service de Médecine Intensive et Réanimation, Groupe Hospitalier Paris Saint-Joseph, Paris, France
    351 rdf:type schema:Organization
    352 grid-institutes:grid.12832.3a schema:alternateName Université Versailles Saint-Quentin, Versailles, France
    353 schema:name Service de Réanimation, Hôpital Raymond Poincaré, Assistance Publique—Hôpitaux de Paris, Garches, France
    354 Université Versailles Saint-Quentin, Versailles, France
    355 rdf:type schema:Organization
    356 grid-institutes:grid.411394.a schema:alternateName Unité de Biostatistiques et d’Epidémiologie, Hôpital Hotel-Dieu, Assistance Publique—Hôpitaux de Paris, Paris, France
    357 schema:name Unité de Biostatistiques et d’Epidémiologie, Hôpital Hotel-Dieu, Assistance Publique—Hôpitaux de Paris, Paris, France
    358 rdf:type schema:Organization
    359 grid-institutes:grid.411784.f schema:alternateName Unité de Recherche Clinique, Hôpital Cochin, Assistance Publique—Hôpitaux de Paris, Paris, France
    360 schema:name Unité de Recherche Clinique, Hôpital Cochin, Assistance Publique—Hôpitaux de Paris, Paris, France
    361 Université Paris Descartes, Paris Sorbonne Cité, Paris, France
    362 rdf:type schema:Organization
    363 grid-institutes:grid.413738.a schema:alternateName Service de Réanimation, Hôpital Antoine Béclère, Assistance Publique—Hôpitaux de Paris, Clamart, France
    364 schema:name Service de Réanimation, Hôpital Antoine Béclère, Assistance Publique—Hôpitaux de Paris, Clamart, France
    365 rdf:type schema:Organization
    366 grid-institutes:grid.413766.1 schema:alternateName Service de Réanimation, Hôpital André Mignot, Versailles, France
    367 schema:name Service de Réanimation, Hôpital André Mignot, Versailles, France
    368 rdf:type schema:Organization
    369 grid-institutes:grid.414093.b schema:alternateName Service de Réanimation Chirurgicale, Hôpital Européen Georges Pompidou, Assistance Publique—Hôpitaux de Paris, Paris, France
    370 schema:name Service de Réanimation Chirurgicale, Hôpital Européen Georges Pompidou, Assistance Publique—Hôpitaux de Paris, Paris, France
    371 Université Paris Descartes, Paris Sorbonne Cité, Paris, France
    372 rdf:type schema:Organization
    373 grid-institutes:grid.424167.2 schema:alternateName Medical Diagnostic Discovery Department, BioMérieux SA, Lyon, France
    374 schema:name Medical Diagnostic Discovery Department, BioMérieux SA, Lyon, France
    375 rdf:type schema:Organization
    376 grid-institutes:grid.428999.7 schema:alternateName Unit Cytokines and Inflammation, Institut Pasteur, Paris, France
    377 schema:name Unit Cytokines and Inflammation, Institut Pasteur, Paris, France
    378 rdf:type schema:Organization
    379 grid-institutes:grid.462411.4 schema:alternateName Unité Endotoxines Structures et Réponse de L’hôte, Département de Microbiologie, Institut de Biologie Intégrative de La Cellule, Paris Saclay, Saclay, France
    380 schema:name Service de Médecine Intensive et Réanimation, Groupe Hospitalier Paris Saint-Joseph, Paris, France
    381 Unité Endotoxines Structures et Réponse de L’hôte, Département de Microbiologie, Institut de Biologie Intégrative de La Cellule, Paris Saclay, Saclay, France
    382 rdf:type schema:Organization
    383 grid-institutes:grid.508487.6 schema:alternateName Université Paris Descartes, Paris Sorbonne Cité, Paris, France
    384 schema:name Unité de Biostatistiques et d’Epidémiologie, Hôpital Hotel-Dieu, Assistance Publique—Hôpitaux de Paris, Paris, France
    385 Université Paris Descartes, Paris Sorbonne Cité, Paris, France
    386 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...