Ontology type: schema:ScholarlyArticle Open Access: True
2018-06-30
AUTHORSMarianna Parlato, François Philippart, Alexandra Rouquette, Virginie Moucadel, Virginie Puchois, Sophie Blein, Jean-Pierre Bedos, Jean-Luc Diehl, Olfa Hamzaoui, Djillali Annane, Didier Journois, Myriam Ben Boutieb, Laurent Estève, Catherine Fitting, Jean-Marc Treluyer, Alexandre Pachot, Minou Adib-Conquy, Jean-Marc Cavaillon, Benoît Misset, The Captain Study Group
ABSTRACTPurposeSepsis and non-septic systemic inflammatory response syndrome (SIRS) are the same syndromes, differing by their cause, sepsis being secondary to microbial infection. Microbiological tests are not enough to detect infection early. While more than 50 biomarkers have been proposed to detect infection, none have been repeatedly validated.AimTo assess the accuracy of circulating biomarkers to discriminate between sepsis and non-septic SIRS.MethodsThe CAPTAIN study was a prospective observational multicenter cohort of 279 ICU patients with hypo- or hyperthermia and criteria of SIRS, included at the time the attending physician considered antimicrobial therapy. Investigators collected blood at inclusion to measure 29 plasma compounds and ten whole blood RNAs, and—for those patients included within working hours—14 leukocyte surface markers. Patients were classified as having sepsis or non-septic SIRS blindly to the biomarkers results. We used the LASSO method as the technique of multivariate analysis, because of the large number of biomarkers.ResultsDuring the study period, 363 patients with SIRS were screened, 84 having exclusion criteria. Ninety-one patients were classified as having non-septic SIRS and 188 as having sepsis. Eight biomarkers had an area under the receiver operating curve (ROC-AUC) over 0.6 with a 95% confidence interval over 0.5. LASSO regression identified CRP and HLA-DRA mRNA as being repeatedly associated with sepsis, and no model performed better than CRP alone (ROC-AUC 0.76 [0.68–0.84]).ConclusionsThe circulating biomarkers tested were found to discriminate poorly between sepsis and non-septic SIRS, and no combination performed better than CRP alone. More... »
PAGES1061-1070
http://scigraph.springernature.com/pub.10.1007/s00134-018-5228-3
DOIhttp://dx.doi.org/10.1007/s00134-018-5228-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1105213984
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/29959455
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Clinical Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Aged",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Biomarkers",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Diagnosis, Differential",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Female",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Intensive Care Units",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Male",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Middle Aged",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Prospective Studies",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Sepsis",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Systemic Inflammatory Response Syndrome",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Unit Cytokines and Inflammation, Institut Pasteur, Paris, France",
"id": "http://www.grid.ac/institutes/grid.428999.7",
"name": [
"Unit Cytokines and Inflammation, Institut Pasteur, Paris, France"
],
"type": "Organization"
},
"familyName": "Parlato",
"givenName": "Marianna",
"id": "sg:person.01166424027.10",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166424027.10"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Unit\u00e9 Endotoxines Structures et R\u00e9ponse de L\u2019h\u00f4te, D\u00e9partement de Microbiologie, Institut de Biologie Int\u00e9grative de La Cellule, Paris Saclay, Saclay, France",
"id": "http://www.grid.ac/institutes/grid.462411.4",
"name": [
"Service de M\u00e9decine Intensive et R\u00e9animation, Groupe Hospitalier Paris Saint-Joseph, Paris, France",
"Unit\u00e9 Endotoxines Structures et R\u00e9ponse de L\u2019h\u00f4te, D\u00e9partement de Microbiologie, Institut de Biologie Int\u00e9grative de La Cellule, Paris Saclay, Saclay, France"
],
"type": "Organization"
},
"familyName": "Philippart",
"givenName": "Fran\u00e7ois",
"id": "sg:person.0667343437.67",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667343437.67"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Universit\u00e9 Paris Descartes, Paris Sorbonne Cit\u00e9, Paris, France",
"id": "http://www.grid.ac/institutes/grid.508487.6",
"name": [
"Unit\u00e9 de Biostatistiques et d\u2019Epid\u00e9miologie, H\u00f4pital Hotel-Dieu, Assistance Publique\u2014H\u00f4pitaux de Paris, Paris, France",
"Universit\u00e9 Paris Descartes, Paris Sorbonne Cit\u00e9, Paris, France"
],
"type": "Organization"
},
"familyName": "Rouquette",
"givenName": "Alexandra",
"id": "sg:person.0612074704.53",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612074704.53"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Medical Diagnostic Discovery Department, BioM\u00e9rieux SA, Lyon, France",
"id": "http://www.grid.ac/institutes/grid.424167.2",
"name": [
"Medical Diagnostic Discovery Department, BioM\u00e9rieux SA, Lyon, France"
],
"type": "Organization"
},
"familyName": "Moucadel",
"givenName": "Virginie",
"id": "sg:person.0621247364.78",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621247364.78"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Unit Cytokines and Inflammation, Institut Pasteur, Paris, France",
"id": "http://www.grid.ac/institutes/grid.428999.7",
"name": [
"Unit Cytokines and Inflammation, Institut Pasteur, Paris, France"
],
"type": "Organization"
},
"familyName": "Puchois",
"givenName": "Virginie",
"id": "sg:person.01146710741.25",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146710741.25"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Medical Diagnostic Discovery Department, BioM\u00e9rieux SA, Lyon, France",
"id": "http://www.grid.ac/institutes/grid.424167.2",
"name": [
"Medical Diagnostic Discovery Department, BioM\u00e9rieux SA, Lyon, France"
],
"type": "Organization"
},
"familyName": "Blein",
"givenName": "Sophie",
"id": "sg:person.016260040121.22",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016260040121.22"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Service de R\u00e9animation, H\u00f4pital Andr\u00e9 Mignot, Versailles, France",
"id": "http://www.grid.ac/institutes/grid.413766.1",
"name": [
"Service de R\u00e9animation, H\u00f4pital Andr\u00e9 Mignot, Versailles, France"
],
"type": "Organization"
},
"familyName": "Bedos",
"givenName": "Jean-Pierre",
"id": "sg:person.01251245025.72",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251245025.72"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "INSERM, UMR S1140, Universit\u00e9 Paris Descartes, Paris Sorbonne Cit\u00e9, Paris, France",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Service de R\u00e9animation M\u00e9dicale, H\u00f4pital Europ\u00e9en Georges Pompidou, Assistance Publique\u2014H\u00f4pitaux de Paris, Paris, France",
"INSERM, UMR S1140, Universit\u00e9 Paris Descartes, Paris Sorbonne Cit\u00e9, Paris, France"
],
"type": "Organization"
},
"familyName": "Diehl",
"givenName": "Jean-Luc",
"id": "sg:person.01356216621.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356216621.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Service de R\u00e9animation, H\u00f4pital Antoine B\u00e9cl\u00e8re, Assistance Publique\u2014H\u00f4pitaux de Paris, Clamart, France",
"id": "http://www.grid.ac/institutes/grid.413738.a",
"name": [
"Service de R\u00e9animation, H\u00f4pital Antoine B\u00e9cl\u00e8re, Assistance Publique\u2014H\u00f4pitaux de Paris, Clamart, France"
],
"type": "Organization"
},
"familyName": "Hamzaoui",
"givenName": "Olfa",
"id": "sg:person.0655750112.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655750112.52"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Universit\u00e9 Versailles Saint-Quentin, Versailles, France",
"id": "http://www.grid.ac/institutes/grid.12832.3a",
"name": [
"Service de R\u00e9animation, H\u00f4pital Raymond Poincar\u00e9, Assistance Publique\u2014H\u00f4pitaux de Paris, Garches, France",
"Universit\u00e9 Versailles Saint-Quentin, Versailles, France"
],
"type": "Organization"
},
"familyName": "Annane",
"givenName": "Djillali",
"id": "sg:person.01051603547.58",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051603547.58"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Service de R\u00e9animation Chirurgicale, H\u00f4pital Europ\u00e9en Georges Pompidou, Assistance Publique\u2014H\u00f4pitaux de Paris, Paris, France",
"id": "http://www.grid.ac/institutes/grid.414093.b",
"name": [
"Universit\u00e9 Paris Descartes, Paris Sorbonne Cit\u00e9, Paris, France",
"Service de R\u00e9animation Chirurgicale, H\u00f4pital Europ\u00e9en Georges Pompidou, Assistance Publique\u2014H\u00f4pitaux de Paris, Paris, France"
],
"type": "Organization"
},
"familyName": "Journois",
"givenName": "Didier",
"id": "sg:person.01171372357.44",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171372357.44"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Unit\u00e9 de Biostatistiques et d\u2019Epid\u00e9miologie, H\u00f4pital Hotel-Dieu, Assistance Publique\u2014H\u00f4pitaux de Paris, Paris, France",
"id": "http://www.grid.ac/institutes/grid.411394.a",
"name": [
"Unit\u00e9 de Biostatistiques et d\u2019Epid\u00e9miologie, H\u00f4pital Hotel-Dieu, Assistance Publique\u2014H\u00f4pitaux de Paris, Paris, France"
],
"type": "Organization"
},
"familyName": "Ben Boutieb",
"givenName": "Myriam",
"id": "sg:person.0721475303.03",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721475303.03"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Medical Diagnostic Discovery Department, BioM\u00e9rieux SA, Lyon, France",
"id": "http://www.grid.ac/institutes/grid.424167.2",
"name": [
"Medical Diagnostic Discovery Department, BioM\u00e9rieux SA, Lyon, France"
],
"type": "Organization"
},
"familyName": "Est\u00e8ve",
"givenName": "Laurent",
"id": "sg:person.010630266633.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010630266633.36"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Unit Cytokines and Inflammation, Institut Pasteur, Paris, France",
"id": "http://www.grid.ac/institutes/grid.428999.7",
"name": [
"Unit Cytokines and Inflammation, Institut Pasteur, Paris, France"
],
"type": "Organization"
},
"familyName": "Fitting",
"givenName": "Catherine",
"id": "sg:person.0646537045.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646537045.37"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Unit\u00e9 de Recherche Clinique, H\u00f4pital Cochin, Assistance Publique\u2014H\u00f4pitaux de Paris, Paris, France",
"id": "http://www.grid.ac/institutes/grid.411784.f",
"name": [
"Universit\u00e9 Paris Descartes, Paris Sorbonne Cit\u00e9, Paris, France",
"Unit\u00e9 de Recherche Clinique, H\u00f4pital Cochin, Assistance Publique\u2014H\u00f4pitaux de Paris, Paris, France"
],
"type": "Organization"
},
"familyName": "Treluyer",
"givenName": "Jean-Marc",
"id": "sg:person.011011303434.22",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011011303434.22"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Medical Diagnostic Discovery Department, BioM\u00e9rieux SA, Lyon, France",
"id": "http://www.grid.ac/institutes/grid.424167.2",
"name": [
"Medical Diagnostic Discovery Department, BioM\u00e9rieux SA, Lyon, France"
],
"type": "Organization"
},
"familyName": "Pachot",
"givenName": "Alexandre",
"id": "sg:person.01105422662.89",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105422662.89"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Unit Cytokines and Inflammation, Institut Pasteur, Paris, France",
"id": "http://www.grid.ac/institutes/grid.428999.7",
"name": [
"Unit Cytokines and Inflammation, Institut Pasteur, Paris, France"
],
"type": "Organization"
},
"familyName": "Adib-Conquy",
"givenName": "Minou",
"id": "sg:person.01231262007.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231262007.42"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Unit Cytokines and Inflammation, Institut Pasteur, Paris, France",
"id": "http://www.grid.ac/institutes/grid.428999.7",
"name": [
"Unit Cytokines and Inflammation, Institut Pasteur, Paris, France"
],
"type": "Organization"
},
"familyName": "Cavaillon",
"givenName": "Jean-Marc",
"id": "sg:person.01063215605.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063215605.37"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Groupe de Recherche sur l\u2019Adaptation Microbienne, Universit\u00e9 de Rouen Normandie, 2656, Rouen, EA, France",
"id": "http://www.grid.ac/institutes/grid.10400.35",
"name": [
"Service de M\u00e9decine Intensive et R\u00e9animation, Groupe Hospitalier Paris Saint-Joseph, Paris, France",
"Intensive Care Unit, Service de R\u00e9animation M\u00e9dicale, H\u00f4pital Charles Nicolle, H\u00f4pitaux de Rouen, 1 rue de Germont, Rouen, France",
"Groupe de Recherche sur l\u2019Adaptation Microbienne, Universit\u00e9 de Rouen Normandie, 2656, Rouen, EA, France"
],
"type": "Organization"
},
"familyName": "Misset",
"givenName": "Beno\u00eet",
"id": "sg:person.0714512043.66",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714512043.66"
],
"type": "Person"
},
{
"familyName": "The Captain Study Group",
"id": "sg:person.013601070147.33",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013601070147.33"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1186/s13054-016-1537-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036790767",
"https://doi.org/10.1186/s13054-016-1537-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2288-14-116",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039842682",
"https://doi.org/10.1186/1471-2288-14-116"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/2110-5820-3-21",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007570782",
"https://doi.org/10.1186/2110-5820-3-21"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00134-017-4683-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003731534",
"https://doi.org/10.1007/s00134-017-4683-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00134-012-2483-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007765668",
"https://doi.org/10.1007/s00134-012-2483-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00134-012-2695-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002785702",
"https://doi.org/10.1007/s00134-012-2695-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00134-001-1143-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027018720",
"https://doi.org/10.1007/s00134-001-1143-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4939-1776-1_15",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041585639",
"https://doi.org/10.1007/978-1-4939-1776-1_15"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/cc5723",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001948339",
"https://doi.org/10.1186/cc5723"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00134-015-4205-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049878234",
"https://doi.org/10.1007/s00134-015-4205-3"
],
"type": "CreativeWork"
}
],
"datePublished": "2018-06-30",
"datePublishedReg": "2018-06-30",
"description": "PurposeSepsis and non-septic systemic inflammatory response syndrome (SIRS) are the same syndromes, differing by their cause, sepsis being secondary to microbial infection. Microbiological tests are not enough to detect infection early. While more than 50 biomarkers have been proposed to detect infection, none have been repeatedly validated.AimTo assess the accuracy of circulating biomarkers to discriminate between sepsis and non-septic SIRS.MethodsThe CAPTAIN study was a prospective observational multicenter cohort of 279 ICU patients with hypo- or hyperthermia and criteria of SIRS, included at the time the attending physician considered antimicrobial therapy. Investigators collected blood at inclusion to measure 29 plasma compounds and ten whole blood RNAs, and\u2014for those patients included within working hours\u201414 leukocyte surface markers. Patients were classified as having sepsis or non-septic SIRS blindly to the biomarkers results. We used the LASSO method as the technique of multivariate analysis, because of the large number of biomarkers.ResultsDuring the study period, 363 patients with SIRS were screened, 84 having exclusion criteria. Ninety-one patients were classified as having non-septic SIRS and 188 as having sepsis. Eight biomarkers had an area under the receiver operating curve (ROC-AUC) over 0.6 with a 95% confidence interval over 0.5. LASSO regression identified CRP and HLA-DRA mRNA as being repeatedly associated with sepsis, and no model performed better than CRP alone (ROC-AUC 0.76 [0.68\u20130.84]).ConclusionsThe circulating biomarkers tested were found to discriminate poorly between sepsis and non-septic SIRS, and no combination performed better than CRP alone.",
"genre": "article",
"id": "sg:pub.10.1007/s00134-018-5228-3",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1313639",
"issn": [
"0342-4642",
"1432-1238"
],
"name": "Intensive Care Medicine",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "7",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "44"
}
],
"keywords": [
"non-septic systemic inflammatory response syndrome",
"systemic inflammatory response syndrome",
"ICU patients",
"criteria of SIRS",
"prospective multicenter cohort study",
"multicenter cohort study",
"inflammatory response syndrome",
"leukocyte surface markers",
"HLA-DRA mRNA",
"whole blood RNA",
"response syndrome",
"multicenter cohort",
"cohort study",
"antimicrobial therapy",
"sepsis",
"exclusion criteria",
"patients",
"multivariate analysis",
"same syndrome",
"surface markers",
"infection",
"blood RNA",
"CRP",
"study period",
"biomarkers",
"biomarker results",
"microbial infections",
"confidence intervals",
"plasma compounds",
"syndrome",
"early phase",
"microbiological tests",
"PurposeSepsis",
"AimTo",
"therapy",
"cohort",
"physicians",
"blood",
"LASSO regression",
"criteria",
"study",
"hyperthermia",
"cause",
"markers",
"mRNA",
"investigators",
"regression",
"intervals",
"RNA",
"period",
"test",
"large number",
"LASSO method",
"combination",
"inclusion",
"number",
"time",
"curves",
"analysis",
"area",
"receiver",
"results",
"compounds",
"technique",
"method",
"model",
"phase",
"accuracy"
],
"name": "Circulating biomarkers may be unable to detect infection at the early phase of sepsis in ICU patients: the CAPTAIN prospective multicenter cohort study",
"pagination": "1061-1070",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1105213984"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00134-018-5228-3"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"29959455"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00134-018-5228-3",
"https://app.dimensions.ai/details/publication/pub.1105213984"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:17",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_761.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00134-018-5228-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00134-018-5228-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00134-018-5228-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00134-018-5228-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00134-018-5228-3'
This table displays all metadata directly associated to this object as RDF triples.
386 TRIPLES
22 PREDICATES
115 URIs
97 LITERALS
18 BLANK NODES