Performance and economic evaluation of the molecular detection of pathogens for patients with severe infections: the EVAMICA open-label, cluster-randomised, interventional ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-04-03

AUTHORS

Emmanuelle Cambau, Isabelle Durand-Zaleski, Stéphane Bretagne, Christian Brun-Buisson, Catherine Cordonnier, Xavier Duval, Stéphanie Herwegh, Julien Pottecher, René Courcol, Sylvie Bastuji-Garin, The EVAMICA study team

ABSTRACT

PurposeMicrobiological diagnosis (MD) of infections remains insufficient. The resulting empirical antimicrobial therapy leads to multidrug resistance and inappropriate treatments. We therefore evaluated the cost-effectiveness of direct molecular detection of pathogens in blood for patients with severe sepsis (SES), febrile neutropenia (FN) and suspected infective endocarditis (SIE).MethodsPatients were enrolled in a multicentre, open-label, cluster-randomised crossover trial conducted during two consecutive periods, randomly assigned as control period (CP; standard diagnostic workup) or intervention period (IP; additional testing with LightCycler®SeptiFast). Multilevel models used to account for clustering were stratified by clinical setting (SES, FN, SIE).ResultsA total of 1416 patients (907 SES, 440 FN, 69 SIE) were evaluated for the primary endpoint (rate of blood MD). For SES patients, the MD rate was higher during IP than during CP [42.6% (198/465) vs. 28.1% (125/442), odds ratio (OR) 1.89, 95% confidence interval (CI) 1.43–2.50; P < 0.001], with an absolute increase of 14.5% (95% CI 8.4–20.7). A trend towards an association was observed for SIE [35.4% (17/48) vs. 9.5% (2/21); OR 6.22 (0.98–39.6)], but not for FN [32.1% (70/218) vs. 30.2% (67/222), P = 0.66]. Overall, turn-around time was shorter during IP than during CP (22.9 vs. 49.5 h, P < 0.001) and hospital costs were similar (median, mean ± SD: IP €14,826, €18,118 ± 17,775; CP €17,828, €18,653 ± 15,966). Bootstrap analysis of the incremental cost-effectiveness ratio showed weak dominance of intervention in SES patients.ConclusionAddition of molecular detection to standard care improves MD and thus efficiency of healthcare resource usage in patients with SES.ClinicalTrials.gov registration number: NCT00709358. More... »

PAGES

1613-1625

References to SciGraph publications

  • 2004-03-02. EPISEPSIS: a reappraisal of the epidemiology and outcome of severe sepsis in French intensive care units in INTENSIVE CARE MEDICINE
  • 2013-09-12. De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock in INTENSIVE CARE MEDICINE
  • 2013-04-05. Diagnosis by real-time polymerase chain reaction of pathogens and antimicrobial resistance genes in bone marrow transplant patients with bloodstream infections in BMC INFECTIOUS DISEASES
  • 2014-02-12. Year in review in Intensive Care Medicine 2013: III. Sepsis, infections, respiratory diseases, pediatrics in INTENSIVE CARE MEDICINE
  • 2015-04-25. Description and validation of a spectrum score method to measure antimicrobial de-escalation in healthcare associated pneumonia from electronic medical records data in BMC INFECTIOUS DISEASES
  • 2015-03-20. Preventive and therapeutic strategies in critically ill patients with highly resistant bacteria in INTENSIVE CARE MEDICINE
  • 2014-11-22. Accuracy of LightCycler® SeptiFast for the detection and identification of pathogens in the blood of patients with suspected sepsis: a systematic review and meta-analysis in INTENSIVE CARE MEDICINE
  • 2016-09-29. Incidence of severe sepsis and septic shock in German intensive care units: the prospective, multicentre INSEP study in INTENSIVE CARE MEDICINE
  • 2014-01-09. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance in BMC INFECTIOUS DISEASES
  • 2013-01-30. Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock, 2012 in INTENSIVE CARE MEDICINE
  • 2015-01-27. Multi-pathogen real-time PCR system adds benefit for my patients: yes in INTENSIVE CARE MEDICINE
  • 2012-09-26. Characteristics and determinants of outcome of hospital-acquired bloodstream infections in intensive care units: the EUROBACT International Cohort Study in INTENSIVE CARE MEDICINE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00134-017-4766-4

    DOI

    http://dx.doi.org/10.1007/s00134-017-4766-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084510771

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28374097


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Anti-Bacterial Agents", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cost-Benefit Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cross-Over Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Endocarditis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Febrile Neutropenia", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hospital Mortality", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Intensive Care Units", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Intention to Treat Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Diagnostic Techniques", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quality Improvement", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retrospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Risk Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sepsis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time-to-Treatment", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Univ Paris Diderot, Sorbonne Paris Cit\u00e9, INSERM, UMR1137 IAME, 75018, Paris, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "APHP-Lariboisi\u00e8re, Bacteriology Laboratory, 75010, Paris, France", 
                "Univ Paris Diderot, Sorbonne Paris Cit\u00e9, INSERM, UMR1137 IAME, 75018, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cambau", 
            "givenName": "Emmanuelle", 
            "id": "sg:person.0664217417.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664217417.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universit\u00e9 Paris Est, UFR de M\u00e9decine, 94010, Cr\u00e9teil, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "APHP-URC ECO, Cr\u00e9teil, France", 
                "Universit\u00e9 Paris Est, UFR de M\u00e9decine, 94010, Cr\u00e9teil, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Durand-Zaleski", 
            "givenName": "Isabelle", 
            "id": "sg:person.01327533357.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327533357.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Molecular Mycology Unit, Institut Pasteur, National Reference Center of Invasive Mycoses and Antifungals, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.428999.7", 
              "name": [
                "APHP-Henri Mondor, Parasitology and Mycology Laboratory, 94010, Cr\u00e9teil, France", 
                "APHP-Saint Louis, Parasitology and Mycology Laboratory, 75010, Paris, France", 
                "Sorbonne Paris Cit\u00e9, University Paris Diderot, Paris, France", 
                "Molecular Mycology Unit, Institut Pasteur, National Reference Center of Invasive Mycoses and Antifungals, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bretagne", 
            "givenName": "St\u00e9phane", 
            "id": "sg:person.01357261117.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357261117.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "APHP- Henri Mondor, Intensive Care Department, 94010, Cr\u00e9teil, France", 
              "id": "http://www.grid.ac/institutes/grid.412116.1", 
              "name": [
                "APHP- Henri Mondor, Intensive Care Department, 94010, Cr\u00e9teil, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brun-Buisson", 
            "givenName": "Christian", 
            "id": "sg:person.0703430670.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703430670.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "APHP- Henri Mondor, Haematology Department and University Paris-Est Cr\u00e9teil, 94010, Cr\u00e9teil, France", 
              "id": "http://www.grid.ac/institutes/grid.412116.1", 
              "name": [
                "APHP- Henri Mondor, Haematology Department and University Paris-Est Cr\u00e9teil, 94010, Cr\u00e9teil, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cordonnier", 
            "givenName": "Catherine", 
            "id": "sg:person.01334421535.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334421535.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "APHP-Bichat, Centre d\u2019investigation Clinique CIC 1425, INSERM UMR 1137 IAME, University Paris Diderot, 75018, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.508487.6", 
              "name": [
                "APHP-Bichat, Centre d\u2019investigation Clinique CIC 1425, INSERM UMR 1137 IAME, University Paris Diderot, 75018, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Duval", 
            "givenName": "Xavier", 
            "id": "sg:person.01156364357.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156364357.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CHU Lille, Microbiology Institute, 59000, Lille, France", 
              "id": "http://www.grid.ac/institutes/grid.410463.4", 
              "name": [
                "CHU Lille, Microbiology Institute, 59000, Lille, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Herwegh", 
            "givenName": "St\u00e9phanie", 
            "id": "sg:person.01367032256.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367032256.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "H\u00f4pitaux Universitaires de Strasbourg, H\u00f4pital de Hautepierre, Service d\u2019Anesth\u00e9sie-R\u00e9animation chirurgicale, Universit\u00e9 de Strasbourg, FMTS, EA 3072, 67098, Strasbourg, France", 
              "id": "http://www.grid.ac/institutes/grid.11843.3f", 
              "name": [
                "H\u00f4pitaux Universitaires de Strasbourg, H\u00f4pital de Hautepierre, Service d\u2019Anesth\u00e9sie-R\u00e9animation chirurgicale, Universit\u00e9 de Strasbourg, FMTS, EA 3072, 67098, Strasbourg, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pottecher", 
            "givenName": "Julien", 
            "id": "sg:person.0703513103.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703513103.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CHU Lille, Microbiology Institute, 59000, Lille, France", 
              "id": "http://www.grid.ac/institutes/grid.410463.4", 
              "name": [
                "CHU Lille, Microbiology Institute, 59000, Lille, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Courcol", 
            "givenName": "Ren\u00e9", 
            "id": "sg:person.01330140535.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330140535.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "APHP, Henri Mondor Hospital, Clinical Research Unit (URC Mondor), 94010, Cr\u00e9teil, France", 
              "id": "http://www.grid.ac/institutes/grid.412116.1", 
              "name": [
                "APHP-Henri Mondor, Public Health Department, 94010, Cr\u00e9teil, France", 
                "University Paris Est (UPE), IMRB, CEpiA (Clinical Epidemiology and Ageing Unit, EA7376), 94010, Cr\u00e9teil, France", 
                "APHP, Henri Mondor Hospital, Clinical Research Unit (URC Mondor), 94010, Cr\u00e9teil, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bastuji-Garin", 
            "givenName": "Sylvie", 
            "id": "sg:person.01044467403.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044467403.10"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "The EVAMICA study team", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/s12879-015-0933-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017237965", 
              "https://doi.org/10.1186/s12879-015-0933-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00134-014-3553-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029384659", 
              "https://doi.org/10.1007/s00134-014-3553-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00134-014-3639-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028868413", 
              "https://doi.org/10.1007/s00134-014-3639-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00134-012-2769-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031148336", 
              "https://doi.org/10.1007/s00134-012-2769-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2334-14-13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032966647", 
              "https://doi.org/10.1186/1471-2334-14-13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00134-003-2121-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013264187", 
              "https://doi.org/10.1007/s00134-003-2121-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00134-012-2695-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002785702", 
              "https://doi.org/10.1007/s00134-012-2695-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00134-016-4504-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028157291", 
              "https://doi.org/10.1007/s00134-016-4504-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00134-013-3077-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003257648", 
              "https://doi.org/10.1007/s00134-013-3077-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2334-13-166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010475148", 
              "https://doi.org/10.1186/1471-2334-13-166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00134-015-3719-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045916659", 
              "https://doi.org/10.1007/s00134-015-3719-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00134-014-3235-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037001056", 
              "https://doi.org/10.1007/s00134-014-3235-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-04-03", 
        "datePublishedReg": "2017-04-03", 
        "description": "PurposeMicrobiological diagnosis (MD) of infections remains insufficient. The resulting empirical antimicrobial therapy leads to multidrug resistance and inappropriate treatments. We therefore evaluated the cost-effectiveness of direct molecular detection of pathogens in blood for patients with severe sepsis (SES), febrile neutropenia (FN) and suspected infective endocarditis (SIE).MethodsPatients were enrolled in a multicentre, open-label, cluster-randomised crossover trial conducted during two consecutive periods, randomly assigned as control period (CP; standard diagnostic workup) or intervention period (IP; additional testing with LightCycler\u00aeSeptiFast). Multilevel models used to account for clustering were stratified by clinical setting (SES, FN, SIE).ResultsA total of 1416 patients (907 SES, 440 FN, 69 SIE) were evaluated for the primary endpoint (rate of blood MD). For SES patients, the MD rate was higher during IP than during CP [42.6% (198/465) vs. 28.1% (125/442), odds ratio (OR) 1.89, 95% confidence interval (CI) 1.43\u20132.50; P\u00a0<\u00a00.001], with an absolute increase of 14.5% (95% CI 8.4\u201320.7). A trend towards an association was observed for SIE [35.4% (17/48) vs. 9.5% (2/21); OR 6.22 (0.98\u201339.6)], but not for FN [32.1% (70/218) vs. 30.2% (67/222), P\u00a0=\u00a00.66]. Overall, turn-around time was shorter during IP than during CP (22.9 vs. 49.5\u00a0h, P\u00a0<\u00a00.001) and hospital costs were similar (median, mean\u00a0\u00b1\u00a0SD: IP \u20ac14,826, \u20ac18,118\u00a0\u00b1\u00a017,775; CP \u20ac17,828, \u20ac18,653\u00a0\u00b1\u00a015,966). Bootstrap analysis of the incremental cost-effectiveness ratio showed weak dominance of intervention in SES patients.ConclusionAddition of molecular detection to standard care improves MD and thus efficiency of healthcare resource usage in patients with SES.ClinicalTrials.gov registration number: NCT00709358.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00134-017-4766-4", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1313639", 
            "issn": [
              "0342-4642", 
              "1432-1238"
            ], 
            "name": "Intensive Care Medicine", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "43"
          }
        ], 
        "keywords": [
          "febrile neutropenia", 
          "severe sepsis", 
          "SES patients", 
          "crossover trial", 
          "cluster-randomised crossover trial", 
          "incremental cost-effectiveness ratio", 
          "healthcare resource usage", 
          "empirical antimicrobial therapy", 
          "molecular detection", 
          "cost-effectiveness ratio", 
          "primary endpoint", 
          "standard care", 
          "infective endocarditis", 
          "ResultsA total", 
          "severe infections", 
          "antimicrobial therapy", 
          "intervention period", 
          "hospital costs", 
          "inappropriate treatment", 
          "patients", 
          "registration number", 
          "clinical setting", 
          "multidrug resistance", 
          "direct molecular detection", 
          "absolute increase", 
          "MD rate", 
          "control period", 
          "infection", 
          "trials", 
          "economic evaluation", 
          "consecutive periods", 
          "MethodsPatients", 
          "multicentre", 
          "sepsis", 
          "neutropenia", 
          "endocarditis", 
          "pathogens", 
          "ConclusionAddition", 
          "therapy", 
          "period", 
          "diagnosis", 
          "blood", 
          "endpoint", 
          "care", 
          "intervention", 
          "multilevel models", 
          "treatment", 
          "total", 
          "association", 
          "bootstrap analysis", 
          "setting", 
          "detection", 
          "evaluation", 
          "MD", 
          "rate", 
          "CP", 
          "increase", 
          "resistance", 
          "IP", 
          "number", 
          "ratio", 
          "time", 
          "analysis", 
          "trends", 
          "SIE", 
          "usage", 
          "model", 
          "cost", 
          "dominance", 
          "performance", 
          "efficiency", 
          "weak dominance", 
          "resource usage"
        ], 
        "name": "Performance and economic evaluation of the molecular detection of pathogens for patients with severe infections: the EVAMICA open-label, cluster-randomised, interventional crossover trial", 
        "pagination": "1613-1625", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084510771"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00134-017-4766-4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28374097"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00134-017-4766-4", 
          "https://app.dimensions.ai/details/publication/pub.1084510771"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_731.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00134-017-4766-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00134-017-4766-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00134-017-4766-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00134-017-4766-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00134-017-4766-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    357 TRIPLES      21 PREDICATES      130 URIs      110 LITERALS      27 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00134-017-4766-4 schema:about N1dd080160e9c4488922e788019d6ca7a
    2 N1de49033063b463aa163baec85686ee4
    3 N2c6f603c592e426c8a147d0a6ddbf576
    4 N49c2668c39ef4d47b32691dd3dcb912f
    5 N4dfb4f4466f84d07bb6425b601cac51d
    6 N51e4cdd4f77046b98096097fcbfe0635
    7 N524dac37d22c4196b087fbb1f21a5de8
    8 N6eac6b15dbbf474abb7360633577f41c
    9 N71758eda358644b8acba2779067b75ce
    10 N748addffa32b450fa12738f0c840e46d
    11 N7dd614a662f14857b4b6b03f943b4f65
    12 N8ae74f2cea0c476296a3aa96050dbae4
    13 N99e29ba32f5841f5907cbba085599ac6
    14 Nae8d50306ebc4aa6932f0cb5761c47da
    15 Nb699a931d9f64919ba960d1df87c42e7
    16 Nc6e10d5acd644b08a8b4541d5e14c9e9
    17 Nccfe0900c67a4b57810105b9ef019271
    18 Ne59fb300db154018bfa9744c35d17e03
    19 Ned59acbde71d45d6997fd1a232ff1813
    20 Nf941fb77a97441ecbdde8f338ab5d176
    21 anzsrc-for:11
    22 anzsrc-for:1103
    23 schema:author N46c69181117d43848b283b117aba186b
    24 schema:citation sg:pub.10.1007/s00134-003-2121-4
    25 sg:pub.10.1007/s00134-012-2695-9
    26 sg:pub.10.1007/s00134-012-2769-8
    27 sg:pub.10.1007/s00134-013-3077-7
    28 sg:pub.10.1007/s00134-014-3235-6
    29 sg:pub.10.1007/s00134-014-3553-8
    30 sg:pub.10.1007/s00134-014-3639-3
    31 sg:pub.10.1007/s00134-015-3719-z
    32 sg:pub.10.1007/s00134-016-4504-3
    33 sg:pub.10.1186/1471-2334-13-166
    34 sg:pub.10.1186/1471-2334-14-13
    35 sg:pub.10.1186/s12879-015-0933-9
    36 schema:datePublished 2017-04-03
    37 schema:datePublishedReg 2017-04-03
    38 schema:description PurposeMicrobiological diagnosis (MD) of infections remains insufficient. The resulting empirical antimicrobial therapy leads to multidrug resistance and inappropriate treatments. We therefore evaluated the cost-effectiveness of direct molecular detection of pathogens in blood for patients with severe sepsis (SES), febrile neutropenia (FN) and suspected infective endocarditis (SIE).MethodsPatients were enrolled in a multicentre, open-label, cluster-randomised crossover trial conducted during two consecutive periods, randomly assigned as control period (CP; standard diagnostic workup) or intervention period (IP; additional testing with LightCycler®SeptiFast). Multilevel models used to account for clustering were stratified by clinical setting (SES, FN, SIE).ResultsA total of 1416 patients (907 SES, 440 FN, 69 SIE) were evaluated for the primary endpoint (rate of blood MD). For SES patients, the MD rate was higher during IP than during CP [42.6% (198/465) vs. 28.1% (125/442), odds ratio (OR) 1.89, 95% confidence interval (CI) 1.43–2.50; P < 0.001], with an absolute increase of 14.5% (95% CI 8.4–20.7). A trend towards an association was observed for SIE [35.4% (17/48) vs. 9.5% (2/21); OR 6.22 (0.98–39.6)], but not for FN [32.1% (70/218) vs. 30.2% (67/222), P = 0.66]. Overall, turn-around time was shorter during IP than during CP (22.9 vs. 49.5 h, P < 0.001) and hospital costs were similar (median, mean ± SD: IP €14,826, €18,118 ± 17,775; CP €17,828, €18,653 ± 15,966). Bootstrap analysis of the incremental cost-effectiveness ratio showed weak dominance of intervention in SES patients.ConclusionAddition of molecular detection to standard care improves MD and thus efficiency of healthcare resource usage in patients with SES.ClinicalTrials.gov registration number: NCT00709358.
    39 schema:genre article
    40 schema:isAccessibleForFree true
    41 schema:isPartOf N0b1336b717bf45c2a7f374e9ab961eaf
    42 N6e64ecacf4b048dab677f3dc24140904
    43 sg:journal.1313639
    44 schema:keywords CP
    45 ConclusionAddition
    46 IP
    47 MD
    48 MD rate
    49 MethodsPatients
    50 ResultsA total
    51 SES patients
    52 SIE
    53 absolute increase
    54 analysis
    55 antimicrobial therapy
    56 association
    57 blood
    58 bootstrap analysis
    59 care
    60 clinical setting
    61 cluster-randomised crossover trial
    62 consecutive periods
    63 control period
    64 cost
    65 cost-effectiveness ratio
    66 crossover trial
    67 detection
    68 diagnosis
    69 direct molecular detection
    70 dominance
    71 economic evaluation
    72 efficiency
    73 empirical antimicrobial therapy
    74 endocarditis
    75 endpoint
    76 evaluation
    77 febrile neutropenia
    78 healthcare resource usage
    79 hospital costs
    80 inappropriate treatment
    81 increase
    82 incremental cost-effectiveness ratio
    83 infection
    84 infective endocarditis
    85 intervention
    86 intervention period
    87 model
    88 molecular detection
    89 multicentre
    90 multidrug resistance
    91 multilevel models
    92 neutropenia
    93 number
    94 pathogens
    95 patients
    96 performance
    97 period
    98 primary endpoint
    99 rate
    100 ratio
    101 registration number
    102 resistance
    103 resource usage
    104 sepsis
    105 setting
    106 severe infections
    107 severe sepsis
    108 standard care
    109 therapy
    110 time
    111 total
    112 treatment
    113 trends
    114 trials
    115 usage
    116 weak dominance
    117 schema:name Performance and economic evaluation of the molecular detection of pathogens for patients with severe infections: the EVAMICA open-label, cluster-randomised, interventional crossover trial
    118 schema:pagination 1613-1625
    119 schema:productId N83c7026fe7c14829a20d2e690ef3e898
    120 Nb63866e0dd7f41dd985d7fc4e343f91d
    121 Nfbe70805be854ff0bb531e436ca91829
    122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084510771
    123 https://doi.org/10.1007/s00134-017-4766-4
    124 schema:sdDatePublished 2022-09-02T16:00
    125 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    126 schema:sdPublisher N061216a11ea94432812b46579dd9d3f8
    127 schema:url https://doi.org/10.1007/s00134-017-4766-4
    128 sgo:license sg:explorer/license/
    129 sgo:sdDataset articles
    130 rdf:type schema:ScholarlyArticle
    131 N061216a11ea94432812b46579dd9d3f8 schema:name Springer Nature - SN SciGraph project
    132 rdf:type schema:Organization
    133 N0b1336b717bf45c2a7f374e9ab961eaf schema:issueNumber 11
    134 rdf:type schema:PublicationIssue
    135 N1109fb95904c419ba93e2548af6180f1 rdf:first sg:person.01156364357.12
    136 rdf:rest Nf66f7d1cf83b4b1fa69c523063e39498
    137 N1dd080160e9c4488922e788019d6ca7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Cross-Over Studies
    139 rdf:type schema:DefinedTerm
    140 N1de49033063b463aa163baec85686ee4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Quality Improvement
    142 rdf:type schema:DefinedTerm
    143 N2c6f603c592e426c8a147d0a6ddbf576 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Intensive Care Units
    145 rdf:type schema:DefinedTerm
    146 N3e241adfeef84660936f606da75d92a6 rdf:first sg:person.0703513103.80
    147 rdf:rest Nfa6ddfb00caf4b6b96e6e8f8a604ed68
    148 N46c69181117d43848b283b117aba186b rdf:first sg:person.0664217417.24
    149 rdf:rest Nbb52871de4ef4cd5892cd6d5097bd8ca
    150 N49c2668c39ef4d47b32691dd3dcb912f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Anti-Bacterial Agents
    152 rdf:type schema:DefinedTerm
    153 N4dfb4f4466f84d07bb6425b601cac51d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Intention to Treat Analysis
    155 rdf:type schema:DefinedTerm
    156 N51e4cdd4f77046b98096097fcbfe0635 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Retrospective Studies
    158 rdf:type schema:DefinedTerm
    159 N524dac37d22c4196b087fbb1f21a5de8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Time Factors
    161 rdf:type schema:DefinedTerm
    162 N6e64ecacf4b048dab677f3dc24140904 schema:volumeNumber 43
    163 rdf:type schema:PublicationVolume
    164 N6eac6b15dbbf474abb7360633577f41c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Hospital Mortality
    166 rdf:type schema:DefinedTerm
    167 N716c8b1364c34f519f7673996f321835 rdf:first N85c8384f6c5c4ea7872f12793ba7e49c
    168 rdf:rest rdf:nil
    169 N71758eda358644b8acba2779067b75ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Middle Aged
    171 rdf:type schema:DefinedTerm
    172 N748addffa32b450fa12738f0c840e46d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Cost-Benefit Analysis
    174 rdf:type schema:DefinedTerm
    175 N7dd614a662f14857b4b6b03f943b4f65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Aged
    177 rdf:type schema:DefinedTerm
    178 N83c7026fe7c14829a20d2e690ef3e898 schema:name pubmed_id
    179 schema:value 28374097
    180 rdf:type schema:PropertyValue
    181 N85c8384f6c5c4ea7872f12793ba7e49c schema:familyName The EVAMICA study team
    182 rdf:type schema:Person
    183 N8ae74f2cea0c476296a3aa96050dbae4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name Febrile Neutropenia
    185 rdf:type schema:DefinedTerm
    186 N9105434d1a774e4786520868a1abb70a rdf:first sg:person.01357261117.17
    187 rdf:rest Ned0f3b41b545464c9c057ed364cc4eb1
    188 N93e04ebab76740cd8d6fb3fe31e98237 rdf:first sg:person.01044467403.10
    189 rdf:rest N716c8b1364c34f519f7673996f321835
    190 N99e29ba32f5841f5907cbba085599ac6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Female
    192 rdf:type schema:DefinedTerm
    193 Nae8d50306ebc4aa6932f0cb5761c47da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    194 schema:name Sepsis
    195 rdf:type schema:DefinedTerm
    196 Nb63866e0dd7f41dd985d7fc4e343f91d schema:name dimensions_id
    197 schema:value pub.1084510771
    198 rdf:type schema:PropertyValue
    199 Nb699a931d9f64919ba960d1df87c42e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    200 schema:name Time-to-Treatment
    201 rdf:type schema:DefinedTerm
    202 Nbb52871de4ef4cd5892cd6d5097bd8ca rdf:first sg:person.01327533357.46
    203 rdf:rest N9105434d1a774e4786520868a1abb70a
    204 Nbbb3f9a8ead24d6a8c2d3a06dc350b31 rdf:first sg:person.01334421535.45
    205 rdf:rest N1109fb95904c419ba93e2548af6180f1
    206 Nc6e10d5acd644b08a8b4541d5e14c9e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    207 schema:name Risk Factors
    208 rdf:type schema:DefinedTerm
    209 Nccfe0900c67a4b57810105b9ef019271 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    210 schema:name Molecular Diagnostic Techniques
    211 rdf:type schema:DefinedTerm
    212 Ne59fb300db154018bfa9744c35d17e03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    213 schema:name Endocarditis
    214 rdf:type schema:DefinedTerm
    215 Ned0f3b41b545464c9c057ed364cc4eb1 rdf:first sg:person.0703430670.30
    216 rdf:rest Nbbb3f9a8ead24d6a8c2d3a06dc350b31
    217 Ned59acbde71d45d6997fd1a232ff1813 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    218 schema:name Humans
    219 rdf:type schema:DefinedTerm
    220 Nf66f7d1cf83b4b1fa69c523063e39498 rdf:first sg:person.01367032256.79
    221 rdf:rest N3e241adfeef84660936f606da75d92a6
    222 Nf941fb77a97441ecbdde8f338ab5d176 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    223 schema:name Male
    224 rdf:type schema:DefinedTerm
    225 Nfa6ddfb00caf4b6b96e6e8f8a604ed68 rdf:first sg:person.01330140535.54
    226 rdf:rest N93e04ebab76740cd8d6fb3fe31e98237
    227 Nfbe70805be854ff0bb531e436ca91829 schema:name doi
    228 schema:value 10.1007/s00134-017-4766-4
    229 rdf:type schema:PropertyValue
    230 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    231 schema:name Medical and Health Sciences
    232 rdf:type schema:DefinedTerm
    233 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    234 schema:name Clinical Sciences
    235 rdf:type schema:DefinedTerm
    236 sg:journal.1313639 schema:issn 0342-4642
    237 1432-1238
    238 schema:name Intensive Care Medicine
    239 schema:publisher Springer Nature
    240 rdf:type schema:Periodical
    241 sg:person.01044467403.10 schema:affiliation grid-institutes:grid.412116.1
    242 schema:familyName Bastuji-Garin
    243 schema:givenName Sylvie
    244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044467403.10
    245 rdf:type schema:Person
    246 sg:person.01156364357.12 schema:affiliation grid-institutes:grid.508487.6
    247 schema:familyName Duval
    248 schema:givenName Xavier
    249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156364357.12
    250 rdf:type schema:Person
    251 sg:person.01327533357.46 schema:affiliation grid-institutes:None
    252 schema:familyName Durand-Zaleski
    253 schema:givenName Isabelle
    254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327533357.46
    255 rdf:type schema:Person
    256 sg:person.01330140535.54 schema:affiliation grid-institutes:grid.410463.4
    257 schema:familyName Courcol
    258 schema:givenName René
    259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330140535.54
    260 rdf:type schema:Person
    261 sg:person.01334421535.45 schema:affiliation grid-institutes:grid.412116.1
    262 schema:familyName Cordonnier
    263 schema:givenName Catherine
    264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334421535.45
    265 rdf:type schema:Person
    266 sg:person.01357261117.17 schema:affiliation grid-institutes:grid.428999.7
    267 schema:familyName Bretagne
    268 schema:givenName Stéphane
    269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357261117.17
    270 rdf:type schema:Person
    271 sg:person.01367032256.79 schema:affiliation grid-institutes:grid.410463.4
    272 schema:familyName Herwegh
    273 schema:givenName Stéphanie
    274 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367032256.79
    275 rdf:type schema:Person
    276 sg:person.0664217417.24 schema:affiliation grid-institutes:None
    277 schema:familyName Cambau
    278 schema:givenName Emmanuelle
    279 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664217417.24
    280 rdf:type schema:Person
    281 sg:person.0703430670.30 schema:affiliation grid-institutes:grid.412116.1
    282 schema:familyName Brun-Buisson
    283 schema:givenName Christian
    284 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703430670.30
    285 rdf:type schema:Person
    286 sg:person.0703513103.80 schema:affiliation grid-institutes:grid.11843.3f
    287 schema:familyName Pottecher
    288 schema:givenName Julien
    289 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703513103.80
    290 rdf:type schema:Person
    291 sg:pub.10.1007/s00134-003-2121-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013264187
    292 https://doi.org/10.1007/s00134-003-2121-4
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1007/s00134-012-2695-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002785702
    295 https://doi.org/10.1007/s00134-012-2695-9
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1007/s00134-012-2769-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031148336
    298 https://doi.org/10.1007/s00134-012-2769-8
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1007/s00134-013-3077-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003257648
    301 https://doi.org/10.1007/s00134-013-3077-7
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1007/s00134-014-3235-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037001056
    304 https://doi.org/10.1007/s00134-014-3235-6
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1007/s00134-014-3553-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029384659
    307 https://doi.org/10.1007/s00134-014-3553-8
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1007/s00134-014-3639-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028868413
    310 https://doi.org/10.1007/s00134-014-3639-3
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1007/s00134-015-3719-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1045916659
    313 https://doi.org/10.1007/s00134-015-3719-z
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1007/s00134-016-4504-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028157291
    316 https://doi.org/10.1007/s00134-016-4504-3
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1186/1471-2334-13-166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010475148
    319 https://doi.org/10.1186/1471-2334-13-166
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1186/1471-2334-14-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032966647
    322 https://doi.org/10.1186/1471-2334-14-13
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1186/s12879-015-0933-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017237965
    325 https://doi.org/10.1186/s12879-015-0933-9
    326 rdf:type schema:CreativeWork
    327 grid-institutes:None schema:alternateName Univ Paris Diderot, Sorbonne Paris Cité, INSERM, UMR1137 IAME, 75018, Paris, France
    328 Université Paris Est, UFR de Médecine, 94010, Créteil, France
    329 schema:name APHP-Lariboisière, Bacteriology Laboratory, 75010, Paris, France
    330 APHP-URC ECO, Créteil, France
    331 Univ Paris Diderot, Sorbonne Paris Cité, INSERM, UMR1137 IAME, 75018, Paris, France
    332 Université Paris Est, UFR de Médecine, 94010, Créteil, France
    333 rdf:type schema:Organization
    334 grid-institutes:grid.11843.3f schema:alternateName Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service d’Anesthésie-Réanimation chirurgicale, Université de Strasbourg, FMTS, EA 3072, 67098, Strasbourg, France
    335 schema:name Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service d’Anesthésie-Réanimation chirurgicale, Université de Strasbourg, FMTS, EA 3072, 67098, Strasbourg, France
    336 rdf:type schema:Organization
    337 grid-institutes:grid.410463.4 schema:alternateName CHU Lille, Microbiology Institute, 59000, Lille, France
    338 schema:name CHU Lille, Microbiology Institute, 59000, Lille, France
    339 rdf:type schema:Organization
    340 grid-institutes:grid.412116.1 schema:alternateName APHP, Henri Mondor Hospital, Clinical Research Unit (URC Mondor), 94010, Créteil, France
    341 APHP- Henri Mondor, Haematology Department and University Paris-Est Créteil, 94010, Créteil, France
    342 APHP- Henri Mondor, Intensive Care Department, 94010, Créteil, France
    343 schema:name APHP, Henri Mondor Hospital, Clinical Research Unit (URC Mondor), 94010, Créteil, France
    344 APHP- Henri Mondor, Haematology Department and University Paris-Est Créteil, 94010, Créteil, France
    345 APHP- Henri Mondor, Intensive Care Department, 94010, Créteil, France
    346 APHP-Henri Mondor, Public Health Department, 94010, Créteil, France
    347 University Paris Est (UPE), IMRB, CEpiA (Clinical Epidemiology and Ageing Unit, EA7376), 94010, Créteil, France
    348 rdf:type schema:Organization
    349 grid-institutes:grid.428999.7 schema:alternateName Molecular Mycology Unit, Institut Pasteur, National Reference Center of Invasive Mycoses and Antifungals, Paris, France
    350 schema:name APHP-Henri Mondor, Parasitology and Mycology Laboratory, 94010, Créteil, France
    351 APHP-Saint Louis, Parasitology and Mycology Laboratory, 75010, Paris, France
    352 Molecular Mycology Unit, Institut Pasteur, National Reference Center of Invasive Mycoses and Antifungals, Paris, France
    353 Sorbonne Paris Cité, University Paris Diderot, Paris, France
    354 rdf:type schema:Organization
    355 grid-institutes:grid.508487.6 schema:alternateName APHP-Bichat, Centre d’investigation Clinique CIC 1425, INSERM UMR 1137 IAME, University Paris Diderot, 75018, Paris, France
    356 schema:name APHP-Bichat, Centre d’investigation Clinique CIC 1425, INSERM UMR 1137 IAME, University Paris Diderot, 75018, Paris, France
    357 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...