Effect of Rotary Evaporator Water Bath Temperature on Recovery Rate of Phthalate Esters View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Long Wang, Ying Liu, Fan Pu, Wen Zhang, Zhongmu Zhou

ABSTRACT

To clarify the influence of water bath temperature on the decompression and concentration efficiency of a rotary evaporator, accurate control of the water bath temperature is required. Therefore, the water bath temperature control system of a rotary evaporator was studied using the recovery rate of phthalate esters (PAEs) as the indicator. The results showed that when the temperature of the rotary evaporator was set at 40°C, the actual temperature range of the concentrated liquid would change from 26-41 to 39-41°C. By modifying the water bath temperature control system, the recovery rate of PAEs could be increased from 72.4% to 85.6% to 93.2%-98.5%. This test indicates that temperature has a great influence on vacuum concentration, and the recovery rate of PAEs can be improved by modifying the water bath temperature control system used in the rotary evaporator. More... »

PAGES

1-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00128-018-2440-3

DOI

http://dx.doi.org/10.1007/s00128-018-2440-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107105548

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30232512


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chongqing Metrology Quality Inspection and Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.495321.8", 
          "name": [
            "National Thermal Flow Meter Quality Supervision and Inspection Center (Chongqing), Chongqing Academy of Metrology and Quality Inspection, 401123, Chongqing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Long", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chongqing Metrology Quality Inspection and Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.495321.8", 
          "name": [
            "National Thermal Flow Meter Quality Supervision and Inspection Center (Chongqing), Chongqing Academy of Metrology and Quality Inspection, 401123, Chongqing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Ying", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chongqing Metrology Quality Inspection and Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.495321.8", 
          "name": [
            "National Thermal Flow Meter Quality Supervision and Inspection Center (Chongqing), Chongqing Academy of Metrology and Quality Inspection, 401123, Chongqing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pu", 
        "givenName": "Fan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chongqing Metrology Quality Inspection and Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.495321.8", 
          "name": [
            "National Thermal Flow Meter Quality Supervision and Inspection Center (Chongqing), Chongqing Academy of Metrology and Quality Inspection, 401123, Chongqing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Wen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chongqing Metrology Quality Inspection and Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.495321.8", 
          "name": [
            "National Thermal Flow Meter Quality Supervision and Inspection Center (Chongqing), Chongqing Academy of Metrology and Quality Inspection, 401123, Chongqing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Zhongmu", 
        "id": "sg:person.010743011104.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010743011104.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.watres.2007.03.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010911918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2016.10.207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021623394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1248/jhs.57.497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023523407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es501189t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055507834"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "To clarify the influence of water bath temperature on the decompression and concentration efficiency of a rotary evaporator, accurate control of the water bath temperature is required. Therefore, the water bath temperature control system of a rotary evaporator was studied using the recovery rate of phthalate esters (PAEs) as the indicator. The results showed that when the temperature of the rotary evaporator was set at 40\u00b0C, the actual temperature range of the concentrated liquid would change from 26-41 to 39-41\u00b0C. By modifying the water bath temperature control system, the recovery rate of PAEs could be increased from 72.4% to 85.6% to 93.2%-98.5%. This test indicates that temperature has a great influence on vacuum concentration, and the recovery rate of PAEs can be improved by modifying the water bath temperature control system used in the rotary evaporator.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00128-018-2440-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1005778", 
        "issn": [
          "0007-4861", 
          "1432-0800"
        ], 
        "name": "Bulletin of Environmental Contamination and Toxicology", 
        "type": "Periodical"
      }
    ], 
    "name": "Effect of Rotary Evaporator Water Bath Temperature on Recovery Rate of Phthalate Esters", 
    "pagination": "1-4", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d78a0deeeea682938aeba943807adf2ba75449b6b265ef9aa87daeae13dfbfa0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30232512"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0046021"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00128-018-2440-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107105548"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00128-018-2440-3", 
      "https://app.dimensions.ai/details/publication/pub.1107105548"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000605.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00128-018-2440-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00128-018-2440-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00128-018-2440-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00128-018-2440-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00128-018-2440-3'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00128-018-2440-3 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author N44a42ff795f64b1393cee1efec47ff87
4 schema:citation https://doi.org/10.1016/j.scitotenv.2016.10.207
5 https://doi.org/10.1016/j.watres.2007.03.043
6 https://doi.org/10.1021/es501189t
7 https://doi.org/10.1248/jhs.57.497
8 schema:datePublished 2018-12
9 schema:datePublishedReg 2018-12-01
10 schema:description To clarify the influence of water bath temperature on the decompression and concentration efficiency of a rotary evaporator, accurate control of the water bath temperature is required. Therefore, the water bath temperature control system of a rotary evaporator was studied using the recovery rate of phthalate esters (PAEs) as the indicator. The results showed that when the temperature of the rotary evaporator was set at 40°C, the actual temperature range of the concentrated liquid would change from 26-41 to 39-41°C. By modifying the water bath temperature control system, the recovery rate of PAEs could be increased from 72.4% to 85.6% to 93.2%-98.5%. This test indicates that temperature has a great influence on vacuum concentration, and the recovery rate of PAEs can be improved by modifying the water bath temperature control system used in the rotary evaporator.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf sg:journal.1005778
15 schema:name Effect of Rotary Evaporator Water Bath Temperature on Recovery Rate of Phthalate Esters
16 schema:pagination 1-4
17 schema:productId N04b6463498c84d96a0e6f1ac4915f76a
18 N4a5a5d02d6d54d5ea24542895d848e52
19 N7209279920a5476d922e07fdf60f66f0
20 N735a2c4744cb4dfc8aab344466704d42
21 N793943c768af47b09802cc30e615b041
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107105548
23 https://doi.org/10.1007/s00128-018-2440-3
24 schema:sdDatePublished 2019-04-10T23:40
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N192710bccbaf46d984c2d24c55c29e7e
27 schema:url http://link.springer.com/10.1007%2Fs00128-018-2440-3
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N04b6463498c84d96a0e6f1ac4915f76a schema:name dimensions_id
32 schema:value pub.1107105548
33 rdf:type schema:PropertyValue
34 N192710bccbaf46d984c2d24c55c29e7e schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N2cf38562b1784aa395f040ecae5f5304 rdf:first N83fde3e103934388b791394db42e56f1
37 rdf:rest Nfc887eb42200482e82e4f23c04ecc10b
38 N44a42ff795f64b1393cee1efec47ff87 rdf:first N8c01b444c1764de2994ea4543b021f33
39 rdf:rest N5731a1c0a304486a870619b7425468f7
40 N48ca1f5baa4747b4a6e5bc2d562d8df2 rdf:first sg:person.010743011104.78
41 rdf:rest rdf:nil
42 N4a5a5d02d6d54d5ea24542895d848e52 schema:name readcube_id
43 schema:value d78a0deeeea682938aeba943807adf2ba75449b6b265ef9aa87daeae13dfbfa0
44 rdf:type schema:PropertyValue
45 N5731a1c0a304486a870619b7425468f7 rdf:first N8ae32d23d6974f70b58e5cf6d670540a
46 rdf:rest N2cf38562b1784aa395f040ecae5f5304
47 N5d08236969e1452288bdc4003142ec91 schema:affiliation https://www.grid.ac/institutes/grid.495321.8
48 schema:familyName Zhang
49 schema:givenName Wen
50 rdf:type schema:Person
51 N7209279920a5476d922e07fdf60f66f0 schema:name pubmed_id
52 schema:value 30232512
53 rdf:type schema:PropertyValue
54 N735a2c4744cb4dfc8aab344466704d42 schema:name doi
55 schema:value 10.1007/s00128-018-2440-3
56 rdf:type schema:PropertyValue
57 N793943c768af47b09802cc30e615b041 schema:name nlm_unique_id
58 schema:value 0046021
59 rdf:type schema:PropertyValue
60 N83fde3e103934388b791394db42e56f1 schema:affiliation https://www.grid.ac/institutes/grid.495321.8
61 schema:familyName Pu
62 schema:givenName Fan
63 rdf:type schema:Person
64 N8ae32d23d6974f70b58e5cf6d670540a schema:affiliation https://www.grid.ac/institutes/grid.495321.8
65 schema:familyName Liu
66 schema:givenName Ying
67 rdf:type schema:Person
68 N8c01b444c1764de2994ea4543b021f33 schema:affiliation https://www.grid.ac/institutes/grid.495321.8
69 schema:familyName Wang
70 schema:givenName Long
71 rdf:type schema:Person
72 Nfc887eb42200482e82e4f23c04ecc10b rdf:first N5d08236969e1452288bdc4003142ec91
73 rdf:rest N48ca1f5baa4747b4a6e5bc2d562d8df2
74 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
75 schema:name Engineering
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
78 schema:name Chemical Engineering
79 rdf:type schema:DefinedTerm
80 sg:journal.1005778 schema:issn 0007-4861
81 1432-0800
82 schema:name Bulletin of Environmental Contamination and Toxicology
83 rdf:type schema:Periodical
84 sg:person.010743011104.78 schema:affiliation https://www.grid.ac/institutes/grid.495321.8
85 schema:familyName Zhou
86 schema:givenName Zhongmu
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010743011104.78
88 rdf:type schema:Person
89 https://doi.org/10.1016/j.scitotenv.2016.10.207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021623394
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.watres.2007.03.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010911918
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1021/es501189t schema:sameAs https://app.dimensions.ai/details/publication/pub.1055507834
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1248/jhs.57.497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023523407
96 rdf:type schema:CreativeWork
97 https://www.grid.ac/institutes/grid.495321.8 schema:alternateName Chongqing Metrology Quality Inspection and Research Institute
98 schema:name National Thermal Flow Meter Quality Supervision and Inspection Center (Chongqing), Chongqing Academy of Metrology and Quality Inspection, 401123, Chongqing, China
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...