Circulating metabolite profile in young adulthood identifies long-term diabetes susceptibility: the Coronary Artery Risk Development in Young Adults (CARDIA) study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-01-18

AUTHORS

Venkatesh L. Murthy, Matthew Nayor, Mercedes Carnethon, Jared P. Reis, Donald Lloyd-Jones, Norrina B. Allen, Robert Kitchen, Paolo Piaggi, Lyn M. Steffen, Ramachandran S. Vasan, Jane E. Freedman, Clary B. Clish, Ravi V. Shah

ABSTRACT

Aims/hypothesisThe aim of this work was to define metabolic correlates and pathways of diabetes pathogenesis in young adults during a subclinical latent phase of diabetes development.MethodsWe studied 2083 young adults of Black and White ethnicity in the prospective observational cohort Coronary Artery Risk Development in Young Adults (CARDIA) study (mean ± SD age 32.1 ± 3.6 years; 43.9% women; 42.7% Black; mean ± SD BMI 25.6 ± 4.9 kg/m2) and 1797 Framingham Heart Study (FHS) participants (mean ± SD age 54.7 ± 9.7 years; 52.1% women; mean ± SD BMI 27.4 ± 4.8 kg/m2), examining the association of comprehensive metabolite profiles with endophenotypes of diabetes susceptibility (adipose and muscle tissue phenotypes and systemic inflammation). Statistical learning techniques and Cox regression were used to identify metabolite signatures of incident diabetes over a median of nearly two decades of follow-up across both cohorts.ResultsWe identified known and novel metabolites associated with endophenotypes that delineate the complex pathophysiological architecture of diabetes, spanning mechanisms of muscle insulin resistance, inflammatory lipid signalling and beta cell metabolism (e.g. bioactive lipids, amino acids and microbe- and diet-derived metabolites). Integrating endophenotypes of diabetes susceptibility with the metabolome generated two multi-parametric metabolite scores, one of which (a proinflammatory adiposity score) was associated with incident diabetes across the life course in participants from both the CARDIA study (young adults; HR in a fully adjusted model 2.10 [95% CI 1.72, 2.55], p<0.0001) and FHS (middle-aged and older adults; HR 1.33 [95% CI 1.14, 1.56], p=0.0004). A metabolite score based on the outcome of diabetes was strongly related to diabetes in CARDIA study participants (fully adjusted HR 3.41 [95% CI 2.85, 4.07], p<0.0001) but not in the older FHS population (HR 1.15 [95% CI 0.99, 1.33], p=0.07).Conclusions/interpretationSelected metabolic abnormalities in young adulthood identify individuals with heightened diabetes risk independent of race, sex and traditional diabetes risk factors. These signatures replicate across the life course.Graphical abstract More... »

PAGES

657-674

References to SciGraph publications

  • 2017-03-15. Untangling the relationship between diet and visceral fat mass through blood metabolomics and gut microbiome profiling in INTERNATIONAL JOURNAL OF OBESITY
  • 2019-02-15. Inflammatory markers response to citrulline supplementation in patients with non-alcoholic fatty liver disease: a randomized, double blind, placebo-controlled, clinical trial in BMC RESEARCH NOTES
  • 2011-03-25. The potential usefulness of taurine on diabetes mellitus and its complications in AMINO ACIDS
  • 2019-10-04. Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts in DIABETOLOGIA
  • 2013-01-30. Histidine supplementation improves insulin resistance through suppressed inflammation in obese women with the metabolic syndrome: a randomised controlled trial in DIABETOLOGIA
  • 2017-03-27. The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue in NATURE MEDICINE
  • 2016-09-30. Thyroid function and risk of type 2 diabetes: a population-based prospective cohort study in BMC MEDICINE
  • 2015-07-13. Nicotinamide N-methyltransferase regulates hepatic nutrient metabolism through Sirt1 protein stabilization in NATURE MEDICINE
  • 2012-02-14. Role of 15-lipoxygenase/15-hydroxyeicosatetraenoic acid in hypoxia-induced pulmonary hypertension in THE JOURNAL OF PHYSIOLOGICAL SCIENCES
  • 2017-10-20. Hippurate as a metabolomic marker of gut microbiome diversity: Modulation by diet and relationship to metabolic syndrome in SCIENTIFIC REPORTS
  • 2018-02-14. N1-methylnicotinamide is a signalling molecule produced in skeletal muscle coordinating energy metabolism in SCIENTIFIC REPORTS
  • 2001-04. Nonesterified fatty acids in blood pressure control and cardiovascular complications in CURRENT HYPERTENSION REPORTS
  • 2018-02-01. Asymmetric dimethylarginine (ADMA) is identified as a potential biomarker of insulin resistance in skeletal muscle in SCIENTIFIC REPORTS
  • 2011-05-26. Biliverdin protects against the deterioration of glucose tolerance in db/db mice in DIABETOLOGIA
  • 2018-04-06. Metabolomics insights into early type 2 diabetes pathogenesis and detection in individuals with normal fasting glucose in DIABETOLOGIA
  • 2019-07-15. The proposed systemic thermogenic metabolites succinate and 12,13-diHOME are inversely associated with adiposity and related metabolic traits: evidence from a large human cross-sectional study in DIABETOLOGIA
  • 2020-01-29. The effects of taurine supplementation on oxidative stress indices and inflammation biomarkers in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial in DIABETOLOGY & METABOLIC SYNDROME
  • 2011-03-20. Metabolite profiles and the risk of developing diabetes in NATURE MEDICINE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00125-021-05641-x

    DOI

    http://dx.doi.org/10.1007/s00125-021-05641-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1144753964

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/35041022


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cohort Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Coronary Vessels", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Diabetes Mellitus, Type 2", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Insulin Resistance", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Risk Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Young Adult", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Medicine and Radiology, University of Michigan, Ann Arbor, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Department of Medicine and Radiology, University of Michigan, Ann Arbor, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Murthy", 
            "givenName": "Venkatesh L.", 
            "id": "sg:person.0657664372.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657664372.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.189504.1", 
              "name": [
                "Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nayor", 
            "givenName": "Matthew", 
            "id": "sg:person.01061126375.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061126375.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Northwestern University, Chicago, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.16753.36", 
              "name": [
                "Northwestern University, Chicago, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Carnethon", 
            "givenName": "Mercedes", 
            "id": "sg:person.01362665716.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362665716.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Heart, Lung, and Blood Institute, Bethesda, MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.279885.9", 
              "name": [
                "National Heart, Lung, and Blood Institute, Bethesda, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Reis", 
            "givenName": "Jared P.", 
            "id": "sg:person.01131462224.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131462224.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Northwestern University, Chicago, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.16753.36", 
              "name": [
                "Northwestern University, Chicago, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lloyd-Jones", 
            "givenName": "Donald", 
            "id": "sg:person.0644756601.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644756601.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Northwestern University, Chicago, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.16753.36", 
              "name": [
                "Northwestern University, Chicago, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Allen", 
            "givenName": "Norrina B.", 
            "id": "sg:person.0755715737.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755715737.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Simches Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.32224.35", 
              "name": [
                "Simches Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kitchen", 
            "givenName": "Robert", 
            "id": "sg:person.01262234110.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262234110.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Information Engineering, University of Pisa, Pisa, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5395.a", 
              "name": [
                "Department of Information Engineering, University of Pisa, Pisa, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Piaggi", 
            "givenName": "Paolo", 
            "id": "sg:person.0614150407.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614150407.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Minnesota School of Public Health, Minneapolis, MN, USA", 
              "id": "http://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "University of Minnesota School of Public Health, Minneapolis, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Steffen", 
            "givenName": "Lyn M.", 
            "id": "sg:person.0664460372.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664460372.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Framingham Heart Study, Framingham, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.510954.c", 
              "name": [
                "Section of Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, MA, USA", 
                "Framingham Heart Study, Framingham, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vasan", 
            "givenName": "Ramachandran S.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA", 
              "id": "http://www.grid.ac/institutes/grid.152326.1", 
              "name": [
                "Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Freedman", 
            "givenName": "Jane E.", 
            "id": "sg:person.01025517204.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025517204.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Broad Institute of Harvard and MIT, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Broad Institute of Harvard and MIT, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Clish", 
            "givenName": "Clary B.", 
            "id": "sg:person.0764632420.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764632420.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA", 
              "id": "http://www.grid.ac/institutes/grid.152326.1", 
              "name": [
                "Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shah", 
            "givenName": "Ravi V.", 
            "id": "sg:person.01265040774.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265040774.51"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41598-018-20549-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100671639", 
              "https://doi.org/10.1038/s41598-018-20549-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00125-011-2197-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035059066", 
              "https://doi.org/10.1007/s00125-011-2197-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00125-019-05001-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121496474", 
              "https://doi.org/10.1007/s00125-019-05001-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11906-001-0021-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044708061", 
              "https://doi.org/10.1007/s11906-001-0021-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-21099-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100925217", 
              "https://doi.org/10.1038/s41598-018-21099-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00125-018-4599-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103178215", 
              "https://doi.org/10.1007/s00125-018-4599-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13104-019-4130-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112168844", 
              "https://doi.org/10.1186/s13104-019-4130-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.2307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002009671", 
              "https://doi.org/10.1038/nm.2307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-13722-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092252273", 
              "https://doi.org/10.1038/s41598-017-13722-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13098-020-0518-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124411459", 
              "https://doi.org/10.1186/s13098-020-0518-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00125-019-4947-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1118017958", 
              "https://doi.org/10.1007/s00125-019-4947-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00125-013-2839-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036471302", 
              "https://doi.org/10.1007/s00125-013-2839-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.4297", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084129245", 
              "https://doi.org/10.1038/nm.4297"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.3882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008178784", 
              "https://doi.org/10.1038/nm.3882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12576-012-0196-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052941474", 
              "https://doi.org/10.1007/s12576-012-0196-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12916-016-0693-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025290889", 
              "https://doi.org/10.1186/s12916-016-0693-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00726-011-0883-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034726031", 
              "https://doi.org/10.1007/s00726-011-0883-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ijo.2017.70", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128149", 
              "https://doi.org/10.1038/ijo.2017.70"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-01-18", 
        "datePublishedReg": "2022-01-18", 
        "description": "Aims/hypothesisThe aim of this work was to define metabolic correlates and pathways of diabetes pathogenesis in young adults during a subclinical latent phase of diabetes development.MethodsWe studied 2083 young adults of Black and White ethnicity in the prospective observational cohort Coronary Artery Risk Development in Young Adults (CARDIA) study (mean\u2009\u00b1\u2009SD age 32.1\u2009\u00b1\u20093.6\u00a0years; 43.9% women; 42.7% Black; mean\u2009\u00b1\u2009SD BMI 25.6\u2009\u00b1\u20094.9\u00a0kg/m2) and 1797 Framingham Heart Study (FHS) participants (mean\u2009\u00b1\u2009SD age 54.7\u2009\u00b1\u20099.7\u00a0years; 52.1% women; mean\u2009\u00b1\u2009SD BMI 27.4\u2009\u00b1\u20094.8\u00a0kg/m2), examining the association of comprehensive metabolite profiles with endophenotypes of diabetes susceptibility (adipose and muscle tissue phenotypes and systemic inflammation). Statistical learning techniques and Cox regression were used to identify metabolite signatures of incident diabetes over a median of nearly two decades of follow-up across both cohorts.ResultsWe identified known and novel metabolites associated with endophenotypes that delineate the complex pathophysiological architecture of diabetes, spanning mechanisms of muscle insulin resistance, inflammatory lipid signalling and beta cell metabolism (e.g. bioactive lipids, amino acids and microbe- and diet-derived metabolites). Integrating endophenotypes of diabetes susceptibility with the metabolome generated two multi-parametric metabolite scores, one of which (a proinflammatory adiposity score) was associated with incident diabetes across the life course in participants from both the CARDIA study (young adults; HR in a fully adjusted model 2.10 [95% CI 1.72, 2.55], p<0.0001) and FHS (middle-aged and older adults; HR 1.33 [95% CI 1.14, 1.56], p=0.0004). A metabolite score based on the outcome of diabetes was strongly related to diabetes in CARDIA study participants (fully adjusted HR 3.41 [95% CI 2.85, 4.07], p<0.0001) but not in the older FHS population (HR 1.15 [95% CI 0.99, 1.33], p=0.07).Conclusions/interpretationSelected metabolic abnormalities in young adulthood identify individuals with heightened diabetes risk independent of race, sex and traditional diabetes risk factors. These signatures replicate across the life course.Graphical abstract", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00125-021-05641-x", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6953566", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7726196", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.10015615", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.9845805", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2499673", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6618920", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1001482", 
            "issn": [
              "0012-186X", 
              "1432-0428"
            ], 
            "name": "Diabetologia", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "65"
          }
        ], 
        "keywords": [
          "Coronary Artery Risk Development", 
          "Young Adults (CARDIA) study", 
          "metabolite score", 
          "incident diabetes", 
          "Risk Development", 
          "adult studies", 
          "diabetes susceptibility", 
          "traditional diabetes risk factors", 
          "study participants", 
          "Aims/hypothesisThe aim", 
          "young adults", 
          "outcomes of diabetes", 
          "young adulthood", 
          "diabetes risk factors", 
          "Framingham Heart Study participants", 
          "muscle insulin resistance", 
          "CARDIA study participants", 
          "beta-cell metabolism", 
          "CARDIA study", 
          "metabolic abnormalities", 
          "diabetes development", 
          "Cox regression", 
          "hypothesisThe aim", 
          "insulin resistance", 
          "diabetes risk", 
          "risk factors", 
          "diabetes pathogenesis", 
          "metabolite profiles", 
          "FH population", 
          "metabolic correlates", 
          "white ethnicity", 
          "diabetes", 
          "latent phase", 
          "metabolite signatures", 
          "life course", 
          "comprehensive metabolite profiles", 
          "endophenotypes", 
          "adults", 
          "adulthood", 
          "scores", 
          "participants", 
          "cell metabolism", 
          "lipid signaling", 
          "susceptibility", 
          "novel metabolites", 
          "pathogenesis", 
          "cohort", 
          "abnormalities", 
          "MethodsWe", 
          "course", 
          "ResultsWe", 
          "study", 
          "median", 
          "outcomes", 
          "sex", 
          "risk", 
          "association", 
          "metabolism", 
          "ethnicity", 
          "correlates", 
          "signaling", 
          "metabolites", 
          "regression", 
          "aim", 
          "profile", 
          "metabolome", 
          "population", 
          "pathway", 
          "individuals", 
          "development", 
          "FHS", 
          "factors", 
          "race", 
          "resistance", 
          "mechanism", 
          "signatures", 
          "decades", 
          "technique", 
          "phase", 
          "work", 
          "statistical learning techniques", 
          "learning techniques", 
          "architecture"
        ], 
        "name": "Circulating metabolite profile in young adulthood identifies long-term diabetes susceptibility: the Coronary Artery Risk Development in Young Adults (CARDIA) study", 
        "pagination": "657-674", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1144753964"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00125-021-05641-x"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "35041022"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00125-021-05641-x", 
          "https://app.dimensions.ai/details/publication/pub.1144753964"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_938.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00125-021-05641-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00125-021-05641-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00125-021-05641-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00125-021-05641-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00125-021-05641-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    387 TRIPLES      21 PREDICATES      138 URIs      112 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00125-021-05641-x schema:about N2efd75d8561f41cfa5eb726472c856b1
    2 N41945a23464d422ea7ff0c843772b52d
    3 N5f6c0010d6474c4cbb03d5b078ae9064
    4 N67c9194597974bc29247681a7f63bc89
    5 N7d5b9d1ebdc54b1baa4ce420d7dfb248
    6 N9a8e6779d5fa4fbf945371415e9a57f4
    7 Nc9d87c4b6817449f99a49ba55c47efca
    8 Nced79a726de049309f65722865881e16
    9 Ncee0ad74b2444c00a7b1e210dd1f36bb
    10 Ne0de4641600a448299d5b964314f1576
    11 Nec804e080a5049e3923601cbcb6a7360
    12 Nf0f10c83048e47d1be1b90d6d9deef2a
    13 anzsrc-for:11
    14 anzsrc-for:1103
    15 schema:author Ne04f414451a347a78e4bdfa7572380ff
    16 schema:citation sg:pub.10.1007/s00125-011-2197-2
    17 sg:pub.10.1007/s00125-013-2839-7
    18 sg:pub.10.1007/s00125-018-4599-x
    19 sg:pub.10.1007/s00125-019-05001-w
    20 sg:pub.10.1007/s00125-019-4947-5
    21 sg:pub.10.1007/s00726-011-0883-5
    22 sg:pub.10.1007/s11906-001-0021-y
    23 sg:pub.10.1007/s12576-012-0196-9
    24 sg:pub.10.1038/ijo.2017.70
    25 sg:pub.10.1038/nm.2307
    26 sg:pub.10.1038/nm.3882
    27 sg:pub.10.1038/nm.4297
    28 sg:pub.10.1038/s41598-017-13722-4
    29 sg:pub.10.1038/s41598-018-20549-0
    30 sg:pub.10.1038/s41598-018-21099-1
    31 sg:pub.10.1186/s12916-016-0693-4
    32 sg:pub.10.1186/s13098-020-0518-7
    33 sg:pub.10.1186/s13104-019-4130-6
    34 schema:datePublished 2022-01-18
    35 schema:datePublishedReg 2022-01-18
    36 schema:description Aims/hypothesisThe aim of this work was to define metabolic correlates and pathways of diabetes pathogenesis in young adults during a subclinical latent phase of diabetes development.MethodsWe studied 2083 young adults of Black and White ethnicity in the prospective observational cohort Coronary Artery Risk Development in Young Adults (CARDIA) study (mean ± SD age 32.1 ± 3.6 years; 43.9% women; 42.7% Black; mean ± SD BMI 25.6 ± 4.9 kg/m2) and 1797 Framingham Heart Study (FHS) participants (mean ± SD age 54.7 ± 9.7 years; 52.1% women; mean ± SD BMI 27.4 ± 4.8 kg/m2), examining the association of comprehensive metabolite profiles with endophenotypes of diabetes susceptibility (adipose and muscle tissue phenotypes and systemic inflammation). Statistical learning techniques and Cox regression were used to identify metabolite signatures of incident diabetes over a median of nearly two decades of follow-up across both cohorts.ResultsWe identified known and novel metabolites associated with endophenotypes that delineate the complex pathophysiological architecture of diabetes, spanning mechanisms of muscle insulin resistance, inflammatory lipid signalling and beta cell metabolism (e.g. bioactive lipids, amino acids and microbe- and diet-derived metabolites). Integrating endophenotypes of diabetes susceptibility with the metabolome generated two multi-parametric metabolite scores, one of which (a proinflammatory adiposity score) was associated with incident diabetes across the life course in participants from both the CARDIA study (young adults; HR in a fully adjusted model 2.10 [95% CI 1.72, 2.55], p<0.0001) and FHS (middle-aged and older adults; HR 1.33 [95% CI 1.14, 1.56], p=0.0004). A metabolite score based on the outcome of diabetes was strongly related to diabetes in CARDIA study participants (fully adjusted HR 3.41 [95% CI 2.85, 4.07], p<0.0001) but not in the older FHS population (HR 1.15 [95% CI 0.99, 1.33], p=0.07).Conclusions/interpretationSelected metabolic abnormalities in young adulthood identify individuals with heightened diabetes risk independent of race, sex and traditional diabetes risk factors. These signatures replicate across the life course.Graphical abstract
    37 schema:genre article
    38 schema:isAccessibleForFree false
    39 schema:isPartOf N7a46a25b66154342967fd495d55b51ed
    40 Nf4552e30a8c64466ab1cead7b51158c5
    41 sg:journal.1001482
    42 schema:keywords Aims/hypothesisThe aim
    43 CARDIA study
    44 CARDIA study participants
    45 Coronary Artery Risk Development
    46 Cox regression
    47 FH population
    48 FHS
    49 Framingham Heart Study participants
    50 MethodsWe
    51 ResultsWe
    52 Risk Development
    53 Young Adults (CARDIA) study
    54 abnormalities
    55 adult studies
    56 adulthood
    57 adults
    58 aim
    59 architecture
    60 association
    61 beta-cell metabolism
    62 cell metabolism
    63 cohort
    64 comprehensive metabolite profiles
    65 correlates
    66 course
    67 decades
    68 development
    69 diabetes
    70 diabetes development
    71 diabetes pathogenesis
    72 diabetes risk
    73 diabetes risk factors
    74 diabetes susceptibility
    75 endophenotypes
    76 ethnicity
    77 factors
    78 hypothesisThe aim
    79 incident diabetes
    80 individuals
    81 insulin resistance
    82 latent phase
    83 learning techniques
    84 life course
    85 lipid signaling
    86 mechanism
    87 median
    88 metabolic abnormalities
    89 metabolic correlates
    90 metabolism
    91 metabolite profiles
    92 metabolite score
    93 metabolite signatures
    94 metabolites
    95 metabolome
    96 muscle insulin resistance
    97 novel metabolites
    98 outcomes
    99 outcomes of diabetes
    100 participants
    101 pathogenesis
    102 pathway
    103 phase
    104 population
    105 profile
    106 race
    107 regression
    108 resistance
    109 risk
    110 risk factors
    111 scores
    112 sex
    113 signaling
    114 signatures
    115 statistical learning techniques
    116 study
    117 study participants
    118 susceptibility
    119 technique
    120 traditional diabetes risk factors
    121 white ethnicity
    122 work
    123 young adulthood
    124 young adults
    125 schema:name Circulating metabolite profile in young adulthood identifies long-term diabetes susceptibility: the Coronary Artery Risk Development in Young Adults (CARDIA) study
    126 schema:pagination 657-674
    127 schema:productId N1d8904837b704d51ae64f187bf1e2d20
    128 N43e34d2653a44c56aac3ea0e2f7bcebe
    129 Nfcf0912a236d44759e3854c89e3c8314
    130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1144753964
    131 https://doi.org/10.1007/s00125-021-05641-x
    132 schema:sdDatePublished 2022-09-02T16:07
    133 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    134 schema:sdPublisher N1d8780b1cd70448fadaaa030e4a31522
    135 schema:url https://doi.org/10.1007/s00125-021-05641-x
    136 sgo:license sg:explorer/license/
    137 sgo:sdDataset articles
    138 rdf:type schema:ScholarlyArticle
    139 N02fb7eddfa074300804312999deba757 rdf:first sg:person.0644756601.31
    140 rdf:rest N7bbf1a74adce47e9b438c2019f147b3f
    141 N0e154c45f6974756a85914496425c6dc rdf:first sg:person.01131462224.90
    142 rdf:rest N02fb7eddfa074300804312999deba757
    143 N0e661c39e88349a3b6eee7e6df2094b9 rdf:first sg:person.01025517204.20
    144 rdf:rest N1ef1a4d9bd374c0b9e473ab13848b35d
    145 N1d336082a03847cda40f8fab2cf1c8b4 schema:affiliation grid-institutes:grid.510954.c
    146 schema:familyName Vasan
    147 schema:givenName Ramachandran S.
    148 rdf:type schema:Person
    149 N1d8780b1cd70448fadaaa030e4a31522 schema:name Springer Nature - SN SciGraph project
    150 rdf:type schema:Organization
    151 N1d8904837b704d51ae64f187bf1e2d20 schema:name dimensions_id
    152 schema:value pub.1144753964
    153 rdf:type schema:PropertyValue
    154 N1ef1a4d9bd374c0b9e473ab13848b35d rdf:first sg:person.0764632420.16
    155 rdf:rest N3c2e3e999fde4f3dbeb62f744c0a4f20
    156 N2efd75d8561f41cfa5eb726472c856b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Diabetes Mellitus, Type 2
    158 rdf:type schema:DefinedTerm
    159 N3c2e3e999fde4f3dbeb62f744c0a4f20 rdf:first sg:person.01265040774.51
    160 rdf:rest rdf:nil
    161 N41945a23464d422ea7ff0c843772b52d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Coronary Vessels
    163 rdf:type schema:DefinedTerm
    164 N43e34d2653a44c56aac3ea0e2f7bcebe schema:name pubmed_id
    165 schema:value 35041022
    166 rdf:type schema:PropertyValue
    167 N525f22ee32494bb091d8b7a863542a2d rdf:first sg:person.01061126375.70
    168 rdf:rest Ncd4812fe3c7e4020b1de5b964303e877
    169 N5f6c0010d6474c4cbb03d5b078ae9064 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Adult
    171 rdf:type schema:DefinedTerm
    172 N67c9194597974bc29247681a7f63bc89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Middle Aged
    174 rdf:type schema:DefinedTerm
    175 N7a46a25b66154342967fd495d55b51ed schema:volumeNumber 65
    176 rdf:type schema:PublicationVolume
    177 N7bbf1a74adce47e9b438c2019f147b3f rdf:first sg:person.0755715737.45
    178 rdf:rest Ne729e4c386574e6399f5304871ecf83e
    179 N7d5b9d1ebdc54b1baa4ce420d7dfb248 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Humans
    181 rdf:type schema:DefinedTerm
    182 N9a8e6779d5fa4fbf945371415e9a57f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Male
    184 rdf:type schema:DefinedTerm
    185 Nac8da7ea2b594147a8d5e752c0d21c67 rdf:first N1d336082a03847cda40f8fab2cf1c8b4
    186 rdf:rest N0e661c39e88349a3b6eee7e6df2094b9
    187 Nc4fe67e585734069804440e390b1a82d rdf:first sg:person.0664460372.86
    188 rdf:rest Nac8da7ea2b594147a8d5e752c0d21c67
    189 Nc9d87c4b6817449f99a49ba55c47efca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    190 schema:name Cohort Studies
    191 rdf:type schema:DefinedTerm
    192 Ncd4812fe3c7e4020b1de5b964303e877 rdf:first sg:person.01362665716.05
    193 rdf:rest N0e154c45f6974756a85914496425c6dc
    194 Nced79a726de049309f65722865881e16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name Young Adult
    196 rdf:type schema:DefinedTerm
    197 Ncee0ad74b2444c00a7b1e210dd1f36bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    198 schema:name Risk Factors
    199 rdf:type schema:DefinedTerm
    200 Ne04f414451a347a78e4bdfa7572380ff rdf:first sg:person.0657664372.00
    201 rdf:rest N525f22ee32494bb091d8b7a863542a2d
    202 Ne0de4641600a448299d5b964314f1576 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    203 schema:name Aged
    204 rdf:type schema:DefinedTerm
    205 Ne729e4c386574e6399f5304871ecf83e rdf:first sg:person.01262234110.29
    206 rdf:rest Nfdaabf017dc34c4ab8aa15011dbceb21
    207 Nec804e080a5049e3923601cbcb6a7360 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    208 schema:name Insulin Resistance
    209 rdf:type schema:DefinedTerm
    210 Nf0f10c83048e47d1be1b90d6d9deef2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    211 schema:name Female
    212 rdf:type schema:DefinedTerm
    213 Nf4552e30a8c64466ab1cead7b51158c5 schema:issueNumber 4
    214 rdf:type schema:PublicationIssue
    215 Nfcf0912a236d44759e3854c89e3c8314 schema:name doi
    216 schema:value 10.1007/s00125-021-05641-x
    217 rdf:type schema:PropertyValue
    218 Nfdaabf017dc34c4ab8aa15011dbceb21 rdf:first sg:person.0614150407.49
    219 rdf:rest Nc4fe67e585734069804440e390b1a82d
    220 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    221 schema:name Medical and Health Sciences
    222 rdf:type schema:DefinedTerm
    223 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    224 schema:name Clinical Sciences
    225 rdf:type schema:DefinedTerm
    226 sg:grant.10015615 http://pending.schema.org/fundedItem sg:pub.10.1007/s00125-021-05641-x
    227 rdf:type schema:MonetaryGrant
    228 sg:grant.2499673 http://pending.schema.org/fundedItem sg:pub.10.1007/s00125-021-05641-x
    229 rdf:type schema:MonetaryGrant
    230 sg:grant.6618920 http://pending.schema.org/fundedItem sg:pub.10.1007/s00125-021-05641-x
    231 rdf:type schema:MonetaryGrant
    232 sg:grant.6953566 http://pending.schema.org/fundedItem sg:pub.10.1007/s00125-021-05641-x
    233 rdf:type schema:MonetaryGrant
    234 sg:grant.7726196 http://pending.schema.org/fundedItem sg:pub.10.1007/s00125-021-05641-x
    235 rdf:type schema:MonetaryGrant
    236 sg:grant.9845805 http://pending.schema.org/fundedItem sg:pub.10.1007/s00125-021-05641-x
    237 rdf:type schema:MonetaryGrant
    238 sg:journal.1001482 schema:issn 0012-186X
    239 1432-0428
    240 schema:name Diabetologia
    241 schema:publisher Springer Nature
    242 rdf:type schema:Periodical
    243 sg:person.01025517204.20 schema:affiliation grid-institutes:grid.152326.1
    244 schema:familyName Freedman
    245 schema:givenName Jane E.
    246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025517204.20
    247 rdf:type schema:Person
    248 sg:person.01061126375.70 schema:affiliation grid-institutes:grid.189504.1
    249 schema:familyName Nayor
    250 schema:givenName Matthew
    251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061126375.70
    252 rdf:type schema:Person
    253 sg:person.01131462224.90 schema:affiliation grid-institutes:grid.279885.9
    254 schema:familyName Reis
    255 schema:givenName Jared P.
    256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131462224.90
    257 rdf:type schema:Person
    258 sg:person.01262234110.29 schema:affiliation grid-institutes:grid.32224.35
    259 schema:familyName Kitchen
    260 schema:givenName Robert
    261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262234110.29
    262 rdf:type schema:Person
    263 sg:person.01265040774.51 schema:affiliation grid-institutes:grid.152326.1
    264 schema:familyName Shah
    265 schema:givenName Ravi V.
    266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265040774.51
    267 rdf:type schema:Person
    268 sg:person.01362665716.05 schema:affiliation grid-institutes:grid.16753.36
    269 schema:familyName Carnethon
    270 schema:givenName Mercedes
    271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362665716.05
    272 rdf:type schema:Person
    273 sg:person.0614150407.49 schema:affiliation grid-institutes:grid.5395.a
    274 schema:familyName Piaggi
    275 schema:givenName Paolo
    276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614150407.49
    277 rdf:type schema:Person
    278 sg:person.0644756601.31 schema:affiliation grid-institutes:grid.16753.36
    279 schema:familyName Lloyd-Jones
    280 schema:givenName Donald
    281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644756601.31
    282 rdf:type schema:Person
    283 sg:person.0657664372.00 schema:affiliation grid-institutes:grid.214458.e
    284 schema:familyName Murthy
    285 schema:givenName Venkatesh L.
    286 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657664372.00
    287 rdf:type schema:Person
    288 sg:person.0664460372.86 schema:affiliation grid-institutes:grid.17635.36
    289 schema:familyName Steffen
    290 schema:givenName Lyn M.
    291 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664460372.86
    292 rdf:type schema:Person
    293 sg:person.0755715737.45 schema:affiliation grid-institutes:grid.16753.36
    294 schema:familyName Allen
    295 schema:givenName Norrina B.
    296 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755715737.45
    297 rdf:type schema:Person
    298 sg:person.0764632420.16 schema:affiliation grid-institutes:grid.66859.34
    299 schema:familyName Clish
    300 schema:givenName Clary B.
    301 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764632420.16
    302 rdf:type schema:Person
    303 sg:pub.10.1007/s00125-011-2197-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035059066
    304 https://doi.org/10.1007/s00125-011-2197-2
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1007/s00125-013-2839-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036471302
    307 https://doi.org/10.1007/s00125-013-2839-7
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1007/s00125-018-4599-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1103178215
    310 https://doi.org/10.1007/s00125-018-4599-x
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1007/s00125-019-05001-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1121496474
    313 https://doi.org/10.1007/s00125-019-05001-w
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1007/s00125-019-4947-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1118017958
    316 https://doi.org/10.1007/s00125-019-4947-5
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1007/s00726-011-0883-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034726031
    319 https://doi.org/10.1007/s00726-011-0883-5
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1007/s11906-001-0021-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1044708061
    322 https://doi.org/10.1007/s11906-001-0021-y
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1007/s12576-012-0196-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052941474
    325 https://doi.org/10.1007/s12576-012-0196-9
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1038/ijo.2017.70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128149
    328 https://doi.org/10.1038/ijo.2017.70
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1038/nm.2307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002009671
    331 https://doi.org/10.1038/nm.2307
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1038/nm.3882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008178784
    334 https://doi.org/10.1038/nm.3882
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1038/nm.4297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129245
    337 https://doi.org/10.1038/nm.4297
    338 rdf:type schema:CreativeWork
    339 sg:pub.10.1038/s41598-017-13722-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092252273
    340 https://doi.org/10.1038/s41598-017-13722-4
    341 rdf:type schema:CreativeWork
    342 sg:pub.10.1038/s41598-018-20549-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100671639
    343 https://doi.org/10.1038/s41598-018-20549-0
    344 rdf:type schema:CreativeWork
    345 sg:pub.10.1038/s41598-018-21099-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100925217
    346 https://doi.org/10.1038/s41598-018-21099-1
    347 rdf:type schema:CreativeWork
    348 sg:pub.10.1186/s12916-016-0693-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025290889
    349 https://doi.org/10.1186/s12916-016-0693-4
    350 rdf:type schema:CreativeWork
    351 sg:pub.10.1186/s13098-020-0518-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124411459
    352 https://doi.org/10.1186/s13098-020-0518-7
    353 rdf:type schema:CreativeWork
    354 sg:pub.10.1186/s13104-019-4130-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112168844
    355 https://doi.org/10.1186/s13104-019-4130-6
    356 rdf:type schema:CreativeWork
    357 grid-institutes:grid.152326.1 schema:alternateName Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
    358 schema:name Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
    359 rdf:type schema:Organization
    360 grid-institutes:grid.16753.36 schema:alternateName Northwestern University, Chicago, IL, USA
    361 schema:name Northwestern University, Chicago, IL, USA
    362 rdf:type schema:Organization
    363 grid-institutes:grid.17635.36 schema:alternateName University of Minnesota School of Public Health, Minneapolis, MN, USA
    364 schema:name University of Minnesota School of Public Health, Minneapolis, MN, USA
    365 rdf:type schema:Organization
    366 grid-institutes:grid.189504.1 schema:alternateName Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
    367 schema:name Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
    368 rdf:type schema:Organization
    369 grid-institutes:grid.214458.e schema:alternateName Department of Medicine and Radiology, University of Michigan, Ann Arbor, MI, USA
    370 schema:name Department of Medicine and Radiology, University of Michigan, Ann Arbor, MI, USA
    371 rdf:type schema:Organization
    372 grid-institutes:grid.279885.9 schema:alternateName National Heart, Lung, and Blood Institute, Bethesda, MD, USA
    373 schema:name National Heart, Lung, and Blood Institute, Bethesda, MD, USA
    374 rdf:type schema:Organization
    375 grid-institutes:grid.32224.35 schema:alternateName Simches Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
    376 schema:name Simches Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
    377 rdf:type schema:Organization
    378 grid-institutes:grid.510954.c schema:alternateName Framingham Heart Study, Framingham, MA, USA
    379 schema:name Framingham Heart Study, Framingham, MA, USA
    380 Section of Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, MA, USA
    381 rdf:type schema:Organization
    382 grid-institutes:grid.5395.a schema:alternateName Department of Information Engineering, University of Pisa, Pisa, Italy
    383 schema:name Department of Information Engineering, University of Pisa, Pisa, Italy
    384 rdf:type schema:Organization
    385 grid-institutes:grid.66859.34 schema:alternateName Broad Institute of Harvard and MIT, Cambridge, MA, USA
    386 schema:name Broad Institute of Harvard and MIT, Cambridge, MA, USA
    387 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...